Establishing trust in insecure distributed sensor networks.

Alex.Perry@GE.com GE Infrastructure, Security

Issues and solutions in securing the facility perimeter against a terrorism threat that may seek to compromise local communications.

Establishing trust in insecure distributed sensor networks Outline

Why do we need to worry about trust? Should miniature sensors have any privacy? How do we characterize a sensor mesh? What methodology could manage all this?

Good sensors want Trust, Privacy and a gossiping Social Community ...? We want a magic wand to indicate dangerous

people and explain why they need stopping.

Why do sensor networks need trust?

Making decisions with consequences These are often irreversible – once made

> Military: You cannot un-neutralize targets Criminal: You cannot un-arrest someone Civil: You cannot un-eject a customer

The decision is based on the data available Without trusting data, how to decide?

Without trust in data delivery, you couldn't believe the wand

Red light: Detected explosives, a gun or some other weapon.

Green light: Clear. Really. You know. Of course nobody modified anything. You can let him go now.

Similarities with Web Services

Finding a server using context and namespace e.g. BIND9 and mandatory DNSSEC

Establishing a trusted path to that server e.g. SSH with host public keys from DNS

Convincing the server to use our delivery e.g. NGSCB shows real data was collected

Avoiding disclosure if device compromised

e.g. crypto libraries for persistent storage

Differences from Web Services

Hostile Denial Of Service – please try later

Has to be a deadline before one must act

Gossip about compromise – shop elsewhere

We can't simply stop providing security

Avoid malicious damage – use secured facility

That'd be a recursive suggestion, sorry

Website represents a company – so sue them

Sensors cannot sue monitoring station ...

Why do sensor networks need privacy?

Sensors inspect humans ... and their payloads

Much like a stateful firewall or similar

Validating oracles simplify breaking security

For network, document and human traffic

Need to avoid sensor results being accessible

Otherwise attackers can learn the sensor

Find out its limitations and avoid detection

Similarities with Privacy Technologies

Restrict data payloads to specific recipients

e.g. Need to use asymmetric encryption

Describe distribution policy to the sensors

e.g. GnuPG's Web of Trust ... as a tree

Distribute keys and signatures carefully

e.g. SSL tunnel to the key server (s)

Avoid side channel attacks on data flow

e.g. Pad short messages with noise

Differences from Privacy Technologies

Key revocation needs to be redistributed

Usually not the key issuer that revokes

Data is compromised after the effective date

This is real time, so retroactively discard

Data fusion combines from many sources

Tempting target, revoke and reprocess

Key manager is not co-located with the key

Use indirect signing by the managers

Why do sensors need a community? Compare information about their vicinity Dynamic distribution of picture streams Identify occasional signature inconsistencies Indicative of camouflaged humans? Identify consistent changes in conversation Indicative of owned devices or sensors? Notice suspicious changes in timestamps Indicative of devices changing configuration

Differences from Online Communities

Sensors cannot recognize a good community

There is no parental guidance available

Current online communities are not secure

In the sense of finding its members

Communities derived from the fields of view

Need a signature on the community

