

What Adobe PSIRT Does, contd.

- Work with product teams to create fixes
- Work with researchers to verify fixes
- Publish bulletins
- Drive Adobe's involvement in MAPP

Agenda

- Part I: What is the Malware Menace?
- "How did I just get infected?"
- Part II: Using Machine Learning For Malware Classification

The Story of Mass Malware

 Regular Web site compromised
 Whistleblowing Site Cryptome.org Infected With Drive-by Exploits
 By Lucian Constantin, IDG News
 Cryptome.org, a website dedicated to disclosing confidential information, was compromised last week and was used to Infect PCs running Infernet Explorer through drive-by exploits.
 Malicious site visited because of Search Engine Optimization (SEO)

Malicious JS/HTML

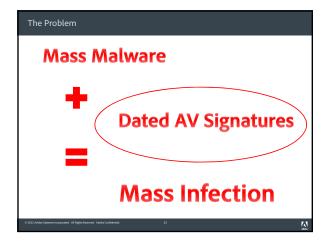
HTTP Redirection and Malware Served

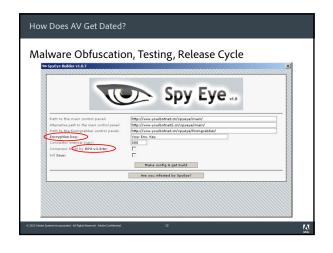
- Redirection to
 - www.googleanalytics.com.urchin.<malicious>
 - Routed to "fast-flux" networks
- Served key-logger (or other) malware
- If antivirus (AV) fails to detect, ...

v problem has been detected and windows has been shut down to prevent damage o your computer.

he problem seems to be caused by the following file: SPCMDCON.SYS

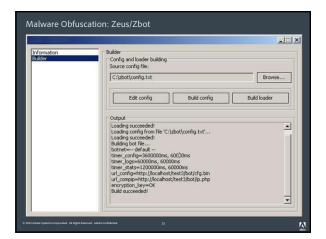
f this is the first time you've seen this Stop error screen, estart your computer. If this screen appears again, follow

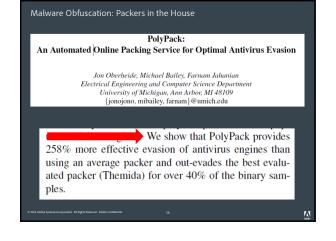

:heck to make sure any new hardware or software is properly installed. If this is a new installation, ask your hardware or software manufacturer for any windows updates you might need.

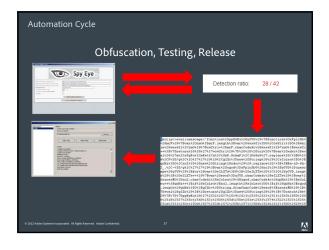

f problems continue, disable or remove any newly installed hardware r software. Disable BIOS memory options such as caching or shadowing, f you need to use Safe Mode to remove or disable components, restart our computer, press F8 to select Advanced Startup options, and then elect Safe Mode.

echnical information:

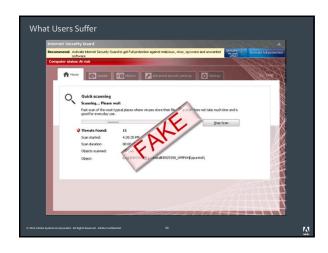
"" STOP: 0x00000050 (0xFD3094C2,0x00000001,0xFBFE7617,0x00000000)

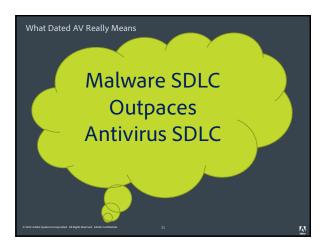

SPCMDCON.SYS - Address FBFE7617 base at FBFE5000, DateStamp 3d6dd67c



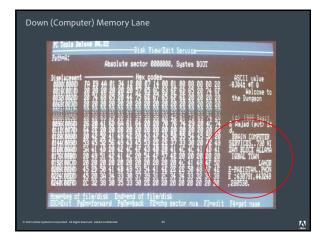


	istotal				
	Istotal				
SHA256:	7e3669a58bb7830e55e7d2b85a4bcf3b8b53bd6e07cf0c1655e247260f88c59				
SHA1:	d25d9d4b2b1d5991f3beac2d049ff00436dd1692				
MD5:	66d4d07bc10a2db402fc4b69621580c6				
File size:	129.9 KB (133065 bytes)				
File name:	66d4d07bc10a2db402fc4b69621580c6				
File type:	Win32 EXE				
Detection ratio	28/42				
Analysis date:	2012-02-07 15:05:10 UTC (1 week, 1 day ago)				
	A				





Making AV Current


- Automate everything
- Published research discusses
 Static detection
 - Dynamic detection
 - Cloud detection
- What else?

What is a Virus?

- Fred Cohen's definition
- A program that can 'infect' other programs by modifying them to include a possibly evolved copy of itself
- Peter Szor's definition
- A program that recursively and explicitly copies a possibly evolved copy of itself

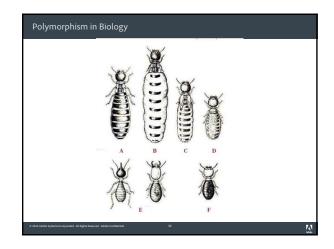
00	00-00 00		00 <10 Ç	
80	00-00 00			
00	00-6D 73		msbl	
20	4C-4F 56		ast.exe I just w ant to say LOUE	
62	69-6C 6C		YOU SAN!! billy	
20	70-6F 73		gates why do you make this possi	
20	6D-61 6E		ble ? Stop makin	
61	72-65 21	21 00	g money and fix your software!!	
00	00-7F 00	00 00	± 6₩> H A	
00 00	00-01 00	01 00 00 46		
C9	11-9F E8	00 00	♦ Jêèù-F4fÞo	
00	03-10 00	00 00		

Agenda

- Part I: What is the Malware Menace?
- "How did I just get infected?"
- Part II: Using Machine Learning For Malware Classification

Scoping of Research

- Classification of Polymorphic Malware
- Multiple variants
- Do not infect other programs
- Examples
- Backdoors
- Downloaders
- Remote Administration Tools
- Infectors and packers out of scope


Why is Polymorphic Malware Important?

Trojans Make Up 80 Percent Of All New Malware

China has the most infected PCs in the world, and 6 million new pieces of malware appeared in Q1 2012, new PandaLabs report says

May 08, 2012 | 11:46 PM |

By Kelly Jackson Higgins Dark Reading

After Classification

- Clustering
- Detection
- Cleaning for infected files
- Deletion

Strategies for Polymorphic Malware Classification

- Rieck at al.: mine malware behavior on sandboxed system
- Machine learning approach
- Karim et al., Venable et al: search for similar malware
- Machine learning/Search engine approach

Strategies for Polymorphic Malware Detection

- Karim et al.: build malware phylogeny
- Bioinformatics approach
- Karim et al.: use *n-perms* to build malware phylogeny
- Machine learning/Search engine approach
- Kruegel et al.: fingerprinting malware using CFGs
 Structural similarity approach
- Vinod P. et al.: analyze CFG and Basic Blocks
- Machine learning/Search engine approach
- Various academics: normalize code
- Formal methods approach

Strategies for Polymorphic Malware Clustering

- Jang, Brumley; Wicherski: fingerprint malware
- Structural similarity approach
- Gurrutxaga et al.: apply distance algorithms
 Structural similarity/Machine learning approach
- Bayer et al.: derive behavioral profile (ANUBIS)
 Machine learning approach

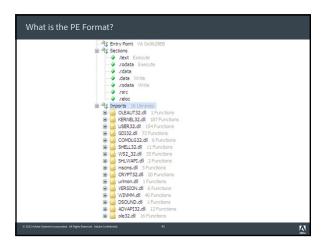
Applying Machine Learning (ML)

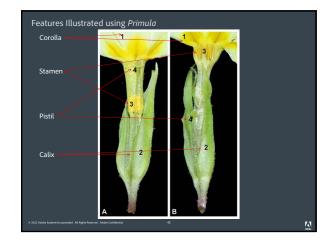
• Steps:

- 1. Extract features
- 2. Train models using ML algorithms
- 3. Use models as classifiers
- 4. Use models to classify unknown files as 0 or 1

Started with 600 features

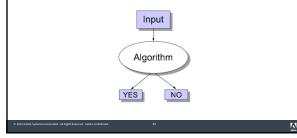
What are the Features?


- EXE and DLL are PE file formats


Windows

Revision8.2-September 21, 2010

Microsoft Portable Executable and Common Object File Format Specification

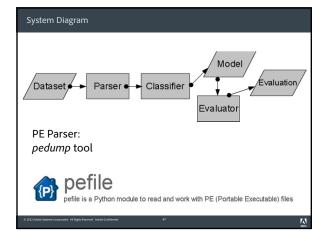

tructures	
🗳 BE HEX	
FILETIME	struct(8)
GUID	struct(16)
IMAGE_DATA_DIRECTORY	struct(8)
VirtualAddress	
Size	
IMAGE_DOS_HEADER	struct(64)
IMAGE_FILE_HEADER	struct(20)
Machine	
NumberOfSections	
TimeDateStamp	
PointerToSymbolTable	
NumberOfSymbols	
SizeOfOptionalHeader	
Characteristics	
IMAGE_NT_HEADERS	struct(248)
IMAGE_OPTIONAL_HEADER	struct(224)
	struct(40)
SYSTEMTIME	struct(16)

Why Fewer Features?

Why are fewer features better than more features?

Less is More

- Irrelevant features negatively affect learning
- Using fewer features...
- Improves algorithm performance
- Represents problem better
- Lets user focus on important variables

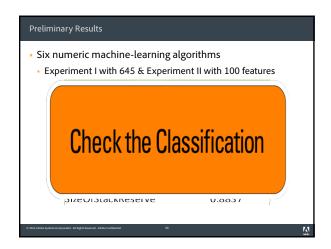


Related Work

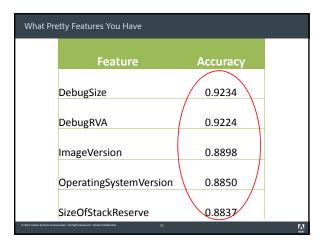
- Multiple algorithms (Schultz et al.) → 97.76% accuracy
- Multiple algorithms, 189 features (Shafiq et al.)
 → 99% accuracy
- Association mining (Ye et al.) → 92% accuracy
- SVM on program strings (Ye et al.) → 93.8% accuracy
- Key Questions
- Which features were used and why?
- What are the minimum features for good classification?

Contributions

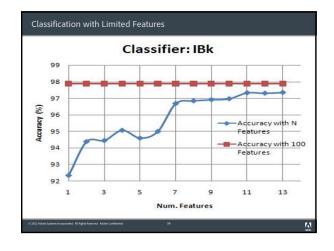
- Excellent classification using **seven** features
- Another layer to existing antivirus technology
- Still need:
- Unpackers and deobfuscators
- Clustering, detection, cleaning, deletion, etc.

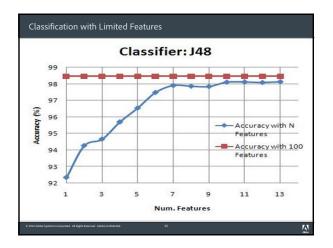

The Haystack (Dataset

- 100,000 pieces of malware
- 16,000 clean programs
- 645 initial features
- Structures in PE file format
- Some calculated features
 See M. Pietrek's

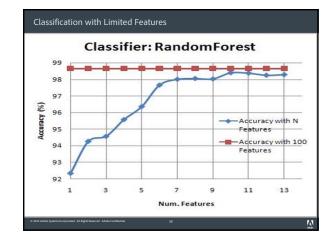


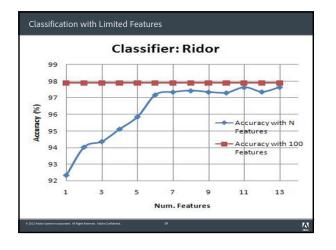
- "An In-Depth Look into the Win32 Portable Executable File Format"
- http://msdn.microsoft.com/en-us/magazine/cc301805.aspx

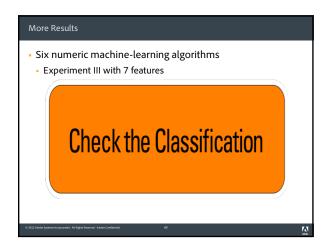


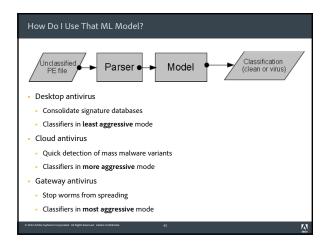

Reduced Feature Set Selection

- Which PE structure does a feature belong to?
- Created seven buckets


- Algorithm Start with bucket 1
- 1. Run ML algorithms on current feature set
- 2. Add next best feature, modulo 7, to feature set
- 3. Return to step 1.

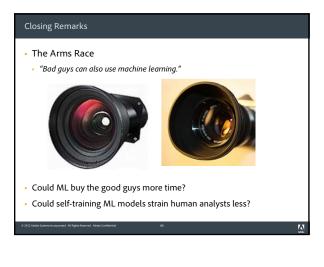





Results

- Best classifier: RandomForest
- 98.21% accuracy
- 6.7% false positive rate
- Why did seven features work so well?
- Algorithms picked most discriminating features first

Results


The Seven

- DebugSize, ImageVersion, latRVA, ExportSize, ResourceSize, VirtualSize2, NumberOfSections
- DebugSize
 - Denotes the size of the debug-directory table
- Malware vs. clean file discrimination: ...
- ImageVersion
 - Denotes the version of the file
 - Malware vs. clean file discrimination: ...

Tool available at http://sourceforge.com/adobe/malclassifier										
# 0 = # 1 = # UNKN #	CLEAN DIRTY IOWN		malware		clean files:					
L	(False	Positi:	ves, True	Negati	ves, True Posit	ives, rates				
₽ J48	FP	TN	TP	FN	TP Rate	FP Rate	Accuracy			
L .	7683	37171	130302	3451	0.97419871	0.171289071	0.937662018			
ĘJ48Gra	6780	TN 38074	TP 129087	FN 4666	TP Rate 0.965114801	FP Rate 0.151157087	Accuracy 0.935915166			
PART	FP	TN	TΡ	FN	TP Rate	FP Rate	Accuracy			
τ	7074		125060				0.907401791			
PRidor	FP 7390	TN 37935		FN 20930	TP Rate 0.845105237	FP Rate 0.163044677	Accuracy 0.843058149			
ID 2012 Adobe	Systems incorporated.	All Rights Reserved. A	dobe Confidential.		64		M			

Closing Remarks

- The Cost of FPs vs. FNs
- ML models without tuning can't be used in production
- Adjust models by adding costs of FPs into probabilities used by algorithms
- Everyone's calculation is different

Protecting the User's Privacy

- What features are you extracting?Is this a development box?
- Research privacy-preserving data mining

Further Reading

- M. Siddiqui, M. C. Wang, and J. Lee. Detecting trojans using data mining techniques. In D. M. A. Hussain, A. Q. K. Rajput, B. S. Chowdhry, and Q. Gee, editors, IMITC, volume 20 of Communications in Computer and Information Science, pages 400-411. Springer, 2008.
- M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo. Data mining methods for detection of new malicious executables. In Proceedings of the 2001 IEEE Symposium on Security and Privacy, pages 38, Washington, DC, USA, 2001. IEEE Computer Society.
- M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Faropputer Jockety.
 M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Faroque and the second seco
- Y. Ye, L. Chen, D. Wang, T. Li, Q. Jiang, and M. Zhao. Sbmds: an interpretable string based malware detection system using svm ensemble with bagging. Journal in Computer Virology, 5(4):283-293, 2009.
- Y. Ye, D. Wang, T. Li, and Ye. Imds: Intelligent malware detection system. In Proceedings of ACM International Conference on Knowlege Discovery and Data Mining (SIGKDD 2007), 2007.
 Dan Guido's Evoluti Intelligence Project
- Dan Guido's Exploit Intelligence Project, <u>http://www.isecpartners.com/storage/docs/presentations/EIP-final.pdf</u>
- M. Merkel, T. Hoppe, C. Kraetzer, J. Dittman. Statistical Detection of Malicious PE-Executables for Fast Offline Analysis TC11 Conference on Communications and Multimedia Security (CMS 2010)

References

- Koolkat,
- http://www.flickr.com/photos/32936091@N05/375299753 6/
- SANS, <u>http://isc.sans.edu/diary.html?storyid=4246</u>
- swankalot, <u>http://www.flickr.com/photos/swanksalot/4335612238/siz</u> <u>es/m/in/photostream/</u>
- BSOD: <u>http://upload.wikimedia.org/wikipedia/commons/a/a8/Win</u> dows XP_BSOD.png
- AVIRA, <u>http://techblog.avira.com/wp-</u> content/uploads/2010/04/spy_eye.png

References

Virustotal,

https://www.virustotal.com/file/7e3669a58bb7830e55e7d2 b85a4bcf3b8b53bd6e07cf0c1655e247260f88c59e/analysis L

Microsoft,

http://www.microsoft.com/security/sir/story/default.aspx#! zbot works

Microsoft MPMC,

http://blogs.technet.com/b/mmpc/archive/2012/01/29/wh en-imitation-isn-t-a-form-of-flattery.aspx

- PC Magazine, <u>http://www.pcmag.com/slideshow_viewer/0,3253,l%3D20</u> <u>5153%26a%3D205149%26po%3D8,00.asp?p=n</u>
- SecurityFocus, <u>http://www.securityfocus.com/excerpts/2</u>

References

- Wikipedia, <u>http://upload.wikimedia.org/wikipedia/commons/d/da/Brain-virus.jpg</u>
 Wikipedia.
- http://upload.wikimedia.org/wikipedia/commons/8/84/Blastervirus.jpg
- darcy m, <u>http://www.flickr.com/photos/darcym/54086635/</u>
- darkchacal, <u>http://www.flickr.com/photos/darkchacal/4252059347/</u>
- Dark Reading, <u>http://www.darkreading.com/vulnerability-management/167901026/security/attacks-breaches/240000043/trojans-make-up-80-percent-of-all-new-malware.html</u>
- Classification,
- http://upload.wikimedia.org/wikipedia/commons/d/d1/Binaryclassification.svg

References

- John Pavelka, <u>http://www.flickr.com/photos/28705377@N04/4142872268/</u> .
- kmgsquidoo, http://www.flickr.com/photos/38117284@N00/1277420698/ .
- LabyrinthX, http://www.flickr.com/photos/labyrinthx/1955627738/ Google Books, .
- http://books.google.com/books/about/Data_Mining.html?id=5FI <u>EAwyn9aoC</u>
- AV Hire Lens, http://www.flickr.com/photos/av_hire_london/5570201239/ potzuyoko,

http://www.flickr.com/photos/potzuyoko/6549346059/

QUESTIONS?

kraman@adobe.com

Adobe Malware Classifier: http://sourceforge.com/adobe/malclassifier

