
Dirty CMOS Tricks

Or, My Rootkit Is Better Than Your Rootkit

Copyright 2003 Jason Spence <jspence@lightconsulting.com>

Me

• Network Security Consultant

• Doxpara Research

PCs

• IBM PC introduced in September 1981

• 16-bit I/O port address space

• 16KB BIOS ROM (date: 4/24/1981)

• Monolithic BIOS

© 1981, IBM

No, I Meant The Real PCs

• IBM PC/XT introduced June, 1984

• Now with fixed disks

• Modular BIOS

• And an I/O mapped RTC: the Motorola

MC146818

CMOS RAM

• RTC contained 64 or 128 bytes of battery-

backed storage

• Contains equipment info used by POST and

DOS

Magic Numbers

;--

; CMOS EQUATES FOR THIS SYSTEM ;

;---

CMOS_PORT EQU 070H ; I/O ADDRESS OF CMOS ADDRESS PORT

CMOS_DATA EQU 071H ; I/O ADDRESS OF CMOS DATA PORT

Fast Forward

• Clones (Compaq and friends)

• PC/AT and the 286’s 24 bit protected mode

• “Let’s wire the keyboard controller to the reset

pin”

• IBM’s PS/2 line and MCA

• Netware

• DOS

• Lotus 1-2-3, Autocad, Wordperfect, etc

Keep Going

• 386 and 32-bit protected mode

• Windows

• OS/2

• Windows NT

• Superscalar architectures

• Microsoft’s licensing practices

Now

• Lots of Win9x, Win2k

• Opteron / Athlon 64 soon

• They all have a CMOS data area of some

kind

What’s in the CMOS?

• Region 0x10-0x3F almost universally

similar (but not PS/2s of course)

• Checksum for first 64 bytes

• Checksum introduced for second 64 bytes

once 128 byte RTCs became available

CMOS Map

0x7F ->

0x00 ->

0x3F ->

0x10 ->
RTC area

“Hardware List”

Vendor Specific

Motherboard hardware

settings, system

configuration

Talking to the CMOS

• Win9x: peek and poke all you want
(DEBUG.COM)

• Win2k: need ring 0 driver

• Linux: iopl()

• FreeBSD: open /dev/io

• OpenBSD: i386_iopl()

• “WARNING You can really hose your
machine if you enable user-level I/O and write
to hardware ports without care.” – OpenBSD
i386_iopl(3) page

Finding the BIOS

• FreeBSD: bios_sigsearch()

• Everyone else: scan 0xc0000 through

0xffff0

Reverse Engineering (1)

• /dev/mem

• \Device\PhysicalMemory

• MOV

• MOVQ (MMX)

• MOVDQ (SSE)

Reverse Engineering (2)

• 0xAA55

• “¬U”?

• Not U either

• 0xFFFF0 (FFFF:000F) (1048560 dec)

Defending (1)

• BIOS backups

• Dual-BIOS motherboards

• Runtime BIOS and CMOS IDS checksums

• DENY PHYSICAL ACCESS

• Create and test BIOS reload procedures

when you do server reload-from-backup

testing

Defending (2)

• Consider complexity of BIOS reload during

hardware vendor evaluation

• Jumpers…

• Emergency reload floppies taped to the

servers w/ secured backups and tested

regularly or at least during post-install

Defending (3)

• Deny I/O port access from userland

• Require driver signatures in NT

• Event IDs 577 + 578 = bad, remote logging

= good

• BSD’s securelevel

• strip -N iopl vmlinux FIXME replace with

ret

Dirty Tricks

• Set the boot password (ransom it!)

• Clear the boot password on kiosks

• Set a random boot password (deadly to

laptops)

Really Dirty Tricks

• Overclocking is fun

• Change the boot logo

• Change the big boot logo too

Really Really Dirty Tricks

• Reset the RTC to the date of the OS image,

THEN install your rootkit (change it back

after)

• Boot off of alternative media to escape OS

limitations if you can’t get kernel access

You Are A Bad Bad Person

• Boot off of the network!

• PXE is your friend

• Boot ALL the systems off the network

• Knoppix, LTSP, NFS root HOWTO

• Demoscene programs

Am I Fired Yet?

Thanks

• Ralf Brown’s Interrupt List

• Mastodonic’s IBM Vintage Personal

Computers Page

• IBM

• ImageMagick for convert

• Dan Kaminsky for hardware

And Now For Something

Completely Different…

