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1 The Counter-Attack

(Note: The following scenario, although a variation, retains the assumptions of the
original information extortion attack in [1], such that the victim, V, does not extract
IV and Ks, while briefly in RAM.)

1.1 Deduction Algorithm

To initiate the counter-attack, we need to propose a deduction algorithm, for deducing
the necessary information; let’s consider the following notation, from [2]. Let RSA
public exponent, e, equal 5, and RSA public key, n, consists of 2048 bits. If m < 5

√
n,

then me = m5 < n. As such, no modular reduction has occurred.

In our particular scenario, m is a 256-bit integer, given as {ChkSm, IV, Ks}; thus,
public-key encrypted m′ is given as {ChkSm, IV, Ks}Kf . We’ll call this 256-bit integer
our necessary information. The encrypted necessary information, using the RSA public
key, given the parameters of the deduction algorithm, is less than 2256×5 = 21280, which
is less than the n of 2048 bits.

By using the above notation, from [2], m is deduced by computing
5
√

m5, which
reveals {ChkSm, IV, Ks}. Therefore, as aforementioned, no modular reduction has
occurred, and this necessary information is deduced by computing the fifth root of the
encrypted necessary information. For the sake of clarity, note the slight, but, necessary
adaptations between the notation in this paper and the notation in [2].

1.2 Cheating the Transaction Successfully Via the Lack of A
Priori Information

The victim, V, generates a bogus H′. V computes ChkSm′ on H′, using {H′, IV, Ks},
with a block cipher in CFB mode. V forms altered ma, which consists of {ChkSm′,
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IV, Ks}. V encrypts ma with W ’s Kf to render m′
a, given as {ChkSm′, IV, Ks}Kf .

V uploads m′
a and H′ and cheats the system, successfully, whilst having recovered the

original critical data, D.

The adversary, W, has no a priori knowledge of the desired data, H, or its ChkSm,
therefore, the authentication mechanism has failed; data confidentiality and integrity
are not preserved.

2 Preserving Data Integrity

2.1 Formal Authentication

In the above counter-attack, it is shown that a confidentiality failure leads to an in-
tegrity failure, since the adversary, W, has no a priori knowledge of information related
to the desired data, H, he is attempting to authenticate. Therefore, given IV and Ks,
the integrity is compromised; given Kf , the transaction can be successfully completed,
thus allowing the victim, V, to successfully cheat.

It is rather trivial to instantiate a scheme for including formal authentication,
which also protects confidentiality, which uses a priori information as a means of prop-
erly verifying the integrity of the desired data, H. Therefore, by making this a priori
information known to the adversary, W, but unknown to the victim, V, the victim, V,
cannot successfully divulge or manipulate the transaction.

2.2 Introducing a MAC and Fixed Keys

To preserve data integrity, we introduce a function for producing a MAC, or Message
Authentication Code; as such, we also introduce an additional assumption. The as-
sumption is that two fixed symmetric keys reside in the cryptovirus, which are not
extracted by the victim, V, before they are overwritten in RAM, after use; these fixed
keys are known by the adversary, W.

Let’s assume that the two fixed keys, Ka and Ke, were derived from larger, master
key material, and are made distinct by a key separation technique, in the form of, for ex-
ample, PRF (shared secret, “encryption key”) and PRF (shared secret, “authentication
key”). We’ll also assume that any IVs used are known, to the adversary, W, and fixed,
having been generated beforehand, by the adversary, W, using a cryptographically-
secure pseudo-random number generator.
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2.3 Strengthened Attack Via HMAC

For this particular example, let’s assume the adversary, W, is using authentication,
then encryption, in that order, or, as commonly denoted, “AtE.” For this scheme, a
hash function is used; let’s assume SHA-256, in the HMAC construction. One of the
aforementioned fixed keys that will be used for authentication is denoted as Ka.

Using Ka, and the notation and notions of security for HMAC, as discussed in [2,
3, 4], the following is computed, specifically for the attack: h(Ka ⊕ opad || h(Ka ⊕
ipad || H )), where opad and ipad are specified constants, h is the hash function, and
H is, of course, the desired message data.

After HMAC has completed, Ka is deleted, and the MAC is encrypted using a
block cipher in CFB mode, as originally specified in [1]; Ke is the fixed key used for
encryption; this key, being symmetric, will also be used to decrypt. As such, we’ll
denote this use as Kd. Also, let’s back-track, and assume that critical data, D, has
been encrypted with a fixed IV and Ke.

The MAC is encrypted with Ke, such that {MAC}Ke; we’ll denote {MAC}Ke as
m, thus revising the original information extortion attack. At this point, Ke is also
deleted. To further revise the original information extortion attack, m′ is formed by
computing {(((MAC ) Ke) Kf )}.

2.4 Completing the Transaction Successfully Via the Inclu-
sion of A Priori Information

At this point, when the adversary, W, instructs the victim, V, to send information,
the information being sent is m′, which is {(((MAC ) Ke) Kf )}, and the desired data,
H. The adversary, W, decrypts m′ with Kw, thus revealing m, which is then decrypted
with Kd (Kd = Ke), thus deducing the MAC value; after such, he authenticates the
desired data, H, by computing a MAC, using HMAC with Ka, then compares the result
to the MAC deduced from m.

This formally authenticates H, since the adversary, W, has a priori information
that is unknown to the victim, V ; this a priori information is Ka and Ke. To complete
the transaction, in a fair manner, the adversary, W, would send the victim, V, {IV,
Kd}.
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3 Conclusion

The counter-attack, although successful, relies completely on the insecure implemen-
tation of RSA, under specific conditions, where dangerous structure is not addressed
using proper encoding functions, most often dubbed as “padding.”

It is reasonable to assume that a clever adversary will take this into consideration.
If so, the original attack, as specified in [1], works quite well. If not, the revised attack
exploits the indirect failures in confidentiality and integrity, as a result of the insecure
implementation of RSA.

However, RSA should be handled with meticulous care, thus suggesting that this
issue should not exist, where the adversary is being responsible. The purpose of this
research is to remind one of the fallacies associated with poor implementations of text-
book RSA, as well as suggest a formal mechanism for providing authentication, and
confidentiality, where RSA is misimplemented.

† Cryptographer, Charlotte-Metro, North Carolina
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