HAL as a Hacking Tool

Merlin of DC949

A practical guide with source code is prefaced
by a short history of Artificial Life
development and comparison to security
development.

Overview

* Al hackers have learned to leverage bottom-
up design for solving complicated problems

 Many of the earliest hackers were found In
or around Al labs

 As hackers we have a multitude of hard to
define and therefore difficult to solve issues
facing us; therefore, we need to attack these
problems in the most effective and reprodu-
cable manner possible

Takeaway

* |t is easy, but requires some forethought, to
effectively create interoperable applications
and systems that have higher value together

than alone

* |[f each piece of the application or system

does a few specific things really well (even
with many options) it is easier to make that

piece really good at what it does

» Lots of really effective pieces lead to ex-
tremely effective systems

Historical Notes

* In the beginning, the Al community promised
it could deliver amazingly complex intelligent
systems quickly and easily

* This effort failed horrendously — top down
cathedrals of code burned by complexity
and ill defined problems. AV has recently re-
peated this learning curve.

* Lisp (a relatively simple construct) evolved
to help solve difficult problems in an ex-
ploratory manner and was included in
emacs

What's Working

 Many tools in unix/linux CLI userland are an
especially good example of these concepts

 cat iIs great, soare more and grep but
all three together in a shell with piping can
do the same jobs many commercial GUI ap-
plications reimplement badly

* Firefox, MetaSploit, emacs, and such are
programs that are extensible to great effect
and in the case of emacs and firefox through
many domains!

Why it Wins

* Top down design can never account for ev-
ery little thing and can lead to rigid designs

* Bottom up design can be adaptable to all
Kinds of unanticipated requirements

 Minimum cost is a few minutes or hours be-
fore you start building your next project
spent thinking from the bottom-up

* Current projects more easily leverage past
work

You might try...

Begin or continue more consciously engag-
Ing in bottom-up design of systems

Keep connections simple — it is easy to add
unneeded complexity

Make your next tool interoperable with oth-
ers via API, shell, or other methods

Everyone can do these things and everyone
benefits from it

=11
=1

namespace fsh

class module

{

public:
module().
module(std: :string path]);
~modulel) ;

bool loadistd::string path);
bool consume(fsh::element®* roll);
bool say(std::string what);

bool is set() const;

private:
typedef void (* mod wvoid)():
typedef wvoid (* mod param)(wvoid* module);
typedef void (* mod string)i(std::string what);

vold* m_image;
mod param m_enter, m_consume;
mod string m_say:
mod wvold m_exit;
std::string m_path, m_name;

#include =string=
#include "module.h™

void enter market (void* module)

{

std: :cout <<= "I'mma chargin mah module!" == std::

volid consume(volid* raw)

{
T std::cout =< "R == std::endl;

vold sayi(std::string what)
{

std: i cout == "Sa1c " <= what <= std::endl;

volid exit()

{
std:icout <= "That's all folks!" ==« std::endl;

1

The Build
Testing: testrig —-

[+] Passed: rig

[-] Failed: failure

[+] Pozzed: random
Paz=ed g totogl of 2 teszts (66 . GEE
Failed a total of 1
Testing: Storage cla

[+] Pt : “EL

[+] = . dHleH f =t Hlean thfJ

: is fIHﬂm nddEd al=1, fFlePﬂt {iﬂt}
X = {int)

Fullud a tutul uT A tﬂa;a
Testing: moduals! —
BIG FAILURE: dlopen{mods test.so, 261%: no suitable image found. Did find:
mods,* z0: can 't map
[+] Pt i created "mods/test.so”
[] Failed: open :
Pas=sed g totol of 1 t
Failed a total of 1 tests |
Testing: sniffer-pcap ——
d: create sniffer
Enter device to sniff: Lod
ved data: himi
ived data: sashimi

. It dn't really work

	Title
	Overview
	Long-term goal
	Development up to present
	The Present Situation
	Potential Alternatives
	Recommendation
	Slide 8
	Slide 9
	Slide 10

