
Ed Bachelder Noah Brickman

SYSTEMS TECHNOLOGY, INC.

- Employee-owned R&D small business established in 1957
 - 400+ Prime Research Contracts, 500+ Research Papers/Reports
- Aerospace
 - Dynamics, Control Systems, Flying Qualities, Pilot-Vehicle Systems (Pilot Models, PIO, etc.), Simulation
- Ground Vehicles
 - Dynamics, Simulation, Driver Performance
- Human Factors
 - Impairment (Drugs, Alcohol, Fatigue), Displays, Divided Attention
- Products
 - Driving and Parachute PC-based Simulators, Control System Design & Analysis Software, Various Computer Simulation and Analysis Tools
- Customers Include: NASA, DOD, DOT, NIH, and Aerospace and Automotive Industries (e.g., Boeing, Ford, GM, etc.)

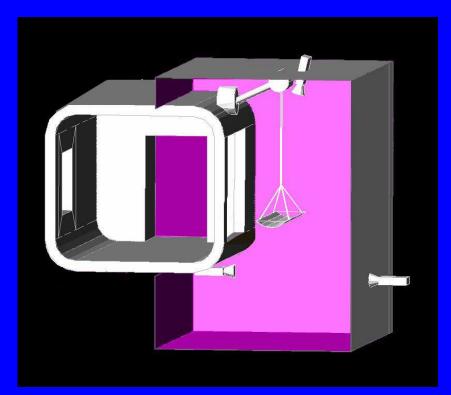
STI PERSONNEL BACKGROUND INFO

- Ed Bachelder
 - Former SH-60B pilot (East Coast)
 - Ph.D. MIT 2000, Perception-Based Synthetic Cueing for Night Vision Device Hover Operations
 - MIT Post-doc on modeling human/ automation interaction to facilitate identification of potential operator mode awareness hazards
 - Primary researcher for ongoing NASA Phase II SBIR "Intelligent Displays for Time-Critical Maneuvering of Multi-Axis Vehicles", employing an optimal control flight director for use during helicopter autorotation

STI PERSONNEL BACKGROUND INFO (SBIR-RELATED)

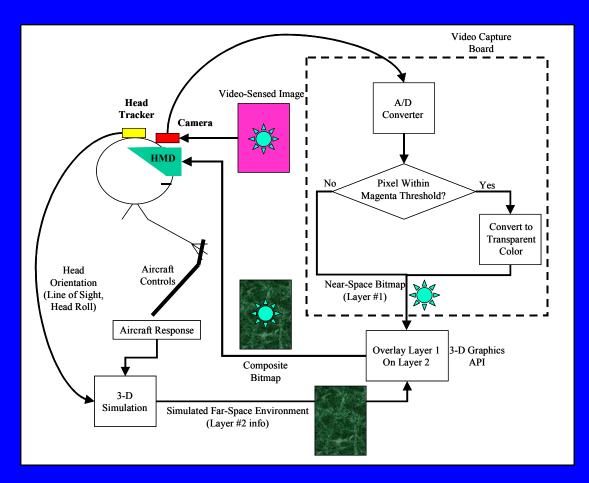
Noah Brickman

- Expertise in networking, 3D graphics, multimedia, 3D engine design, vehicle dynamics simulation, and artificial intelligence
- Developed sophisticated software projects including networked multi-user simulation and entertainment products
- Lead programmer for systems that variously integrated a head mounted display, spatial tracking system, speech synthesis, speech recognition, pinch gloves, tactile feedback systems, and gesture recognition


INTRODUCTION

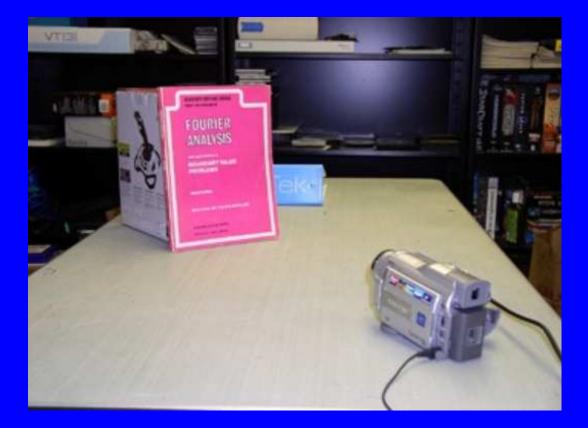
- The effectiveness and safety of complex, multi-role helicopter platforms require that the cabin crew interact seamlessly with the flight crew and a dynamic external environment
- Due to physical constraints and fidelity limitations current simulation designs fail to accommodate a wide range of training
- STI's approach to this challenge employs a novel and elegant method using three proven technologies – live video capture, real-time video editing (blue screen imaging), and virtual environment simulation

- Video from the trainee's perspective is sent to a processor that preserves near-space (cabin environment) pixels and makes transparent the farspace (out-the-cabin) pixels using blue screen imaging techniques.
- This bitmap is overlaid on a virtual environment, and sent to the trainee's helmet mounted display
- In this way the user directly views the physical cabin environment, while the simulated outside world serves as a backdrop.



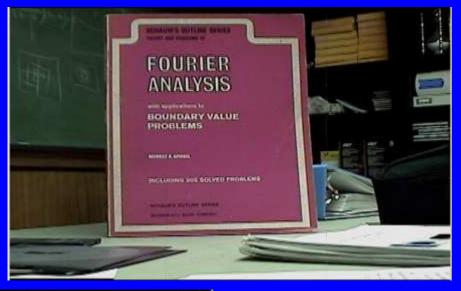
Frontal View of Cabin Enclosure

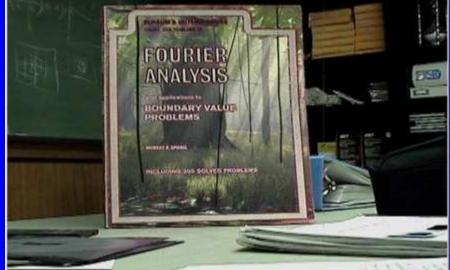
Virtual Environment Backdrop (Including Virtual Cockpit).



Fused Reality Representation

FUSED REALITY DEMONSTRATION


Video Camera Aimed at Objects Appearing in Sensed Image Layer


23 April 2005

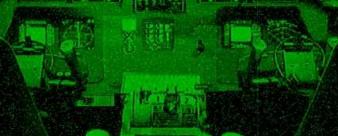
FUSED REALITY DEMONSTRATION

PROCESS DETAILS

- Processing and rendering is being conducted in *real time*, at 30 frames per second
- Thus349,920 pixels are processed per frame, or 10,497,600 pixels per second
- Depth perception during manual tasks is somewhat degraded when stereoscopic vision (two different images of the world are presented to each eye, from each eye's perspective) is not available
- Given the apparent spare processing capacity of the video card, it may be possible to conduct dual-camera processing and further enhance the technique's realism.

CAPTURED VIDEO

- Captured video data is converted to a texture map
- This texture map can then be operated on a pixel-by-pixel basis in exactly the same way as the simulated environment, which gives the capability to transform the video texture map so as to simulate a Night Vision Goggle (NVG) scene



FUSED REALITY COCKPIT DEMONSTRATION

23 April 2005

Fused Reality Video

23 April 2005

Key Hardware Elements of Fused Reality

Helmet-Mounted Display, Helmet-Mounted Micro-Camera, Interactive Hardware (Sub-Machine Gun), Portal Surface (Magenta Dish).

. VR Headset Mounted with Micro Camera and Inertial Head Tracker

Interactive Sub-machine Gun Model

Sub-machine Gun Model shown with Computer/Sensor Interface

Fused Image

Actual Sub-Machine Gun and Operator's Hand in Foreground, and Simulated Background (Helicopter Airframe, Tank, Gunfire (Note Dirt Splashes in Front of Tank), and Geo-Specific Scene)

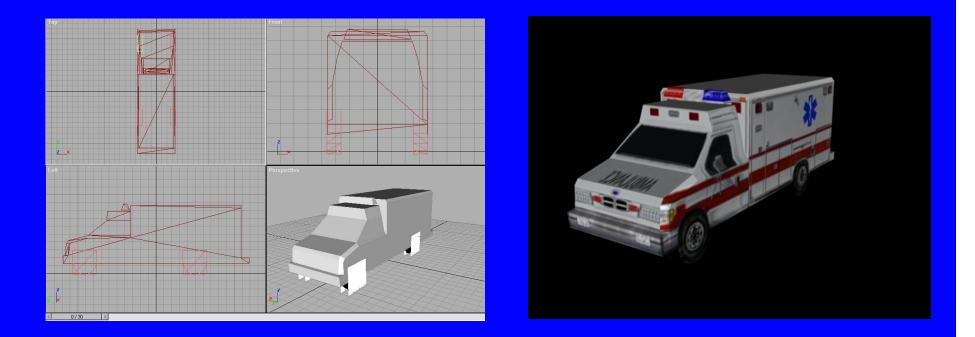
Sequence of Fused Images (1)

Ordnance Striking Dirt In Front of Tank

Sequence of Fused Images (2)

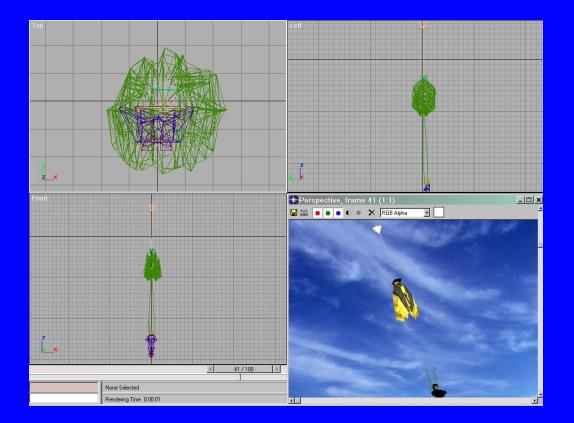
Tank Struck and Igniting

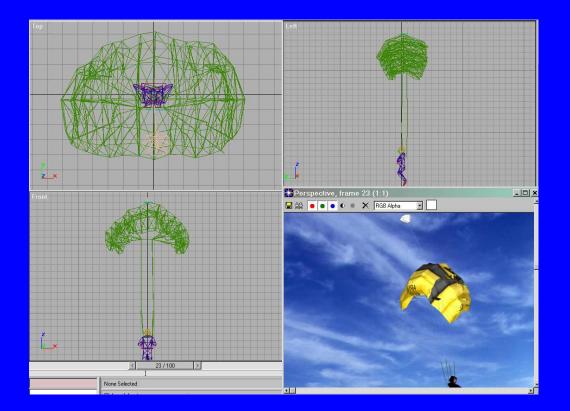
Sequence of Fused Images (3)


Tank Engulfed in Fireball

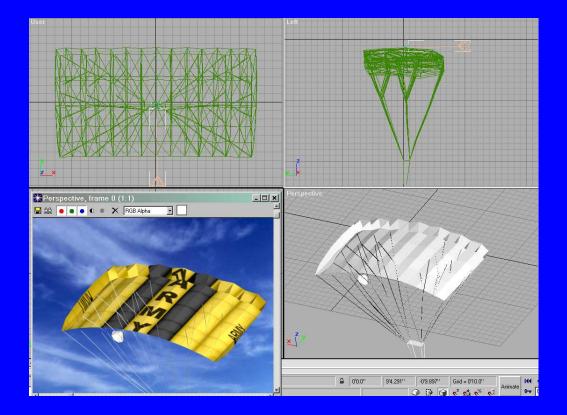
Fused Reality Gunnery Demonstration at HC-3 North Island

Red Arrow Indicates Gunner's Window Where Sub-Machine Gun was Mounted and Magenta Dish Erected


Texture Mapping


Simplified Ambulance Geometry, Rendered Ambulance Model After Applying Texture Maps

- The opening sequence of a deployed parachute is depicted in the following figures with model animation
- Manipulating the original parachute model into various deformation states created a series of chute models
- These states were then set as morph targets in the simulation, and a computer algorithm was used to generate the smooth animation of an opening parachute by interpolating vertex positions between each model



Chute Opening Sequence – Streamer

Chute Opening Sequence - Hung Slider (Chute Malfunction)

Chute Opening Sequence - Fully Open

Texture Map Applications

Litter Assembly

TECHNOLOGY INSERTION AREAS

- Medevac
- Fire fighting
- Surgery simulation and medical therapy
- Driving
- Sports
- Entertainment Industry

Patent Pending

