
Security Engineering
in Windows Vista™

Michael Weiss
Lead Security Program Manager
Microsoft® Windows® Security Assurance
Michael.Weiss@Microsoft.com

Security Engineering
in Windows Vista™

Michael Weiss
Lead Security Program Manager
Microsoft® Windows® Security Assurance
Michael.Weiss@Microsoft.com

Agenda

Introduction

 Who Am I?

 Goals of This Talk

Windows Vista Security Approach

Retrospective Case Study

Q & A

A Quick Heads-Up

Did you see this presentation at BlackHat, or HitB?

No significant new information here

 New organization of information, though

Who Am I?

Lead Security Program Manager in Windows Security
Assurance

 Windows Security Assurance does the following for Windows feature
teams:

 Evangelize security

 Consult on design and implementation

 Train on attacker and defense techniques

 Develop and enforce security policies

Joined Microsoft 14 years ago

 Deployment and management support

 Financial services

 Online security

 Windows security

Goals of This Talk

Explain what we did in Windows Vista

 Overview of security engineering activities

 Some detail on our major security initiatives

 Overview of our work on mitigations

Listen to

 Any engineering-focused feedback you have

 How you think we’re doing

Ungoal:

 Security features (e.g., BitLocker)

Agenda

Introduction

 Who Am I?

 Goals of This Talk

Windows Vista Security Approach

Retrospective Case Study

Q & A

Windows Vista Security Approach

Everything in Windows XP® SP2 SDL plus

Apply least privilege throughout architecture

Automate proven techniques

Methodically apply security expertise on whole OS

Additional Defense-in-Depth mitigations

The Goal:

Stop playing Whac-a-Mole
Find and fix vulnerabilities before shipping

UAC

Least Privilege
The target area is only two meters wide

Problem:

 If a program runs as SYSTEM or Administrator, any compromise is
catastrophic

Defenses:

 Run Applications with Least Privilege

 Enhance the standard user account

 Administrators use full privilege only for administrative tasks or
applications

 Run some applications (e.g., IE) with heightened restrictions

 Harden Services

 Minimize privilege user pervasively in services

 Define restrictions to ensure behavior conforms to expected activity

Why Focus on Hardening Services?

Services are attractive targets for malware

 Sasser, Blaster, Slammer, Zotob, CodeRed, …

No need for user interaction

Often run in elevated identities

Many worms do nasty things to services

 Alter the OS

 Open network connections to propagate

Get Services Out of SYSTEM

LOCAL SERVICE or NETWORK SERVICE instead

 LOCAL SERVICE and NETWORK SERVICE are not members of the
Administrators group

 LOCAL SERVICE and NETWORK SERVICE are denied the most
powerful privileges

 SeDebug

 SeTcb

 etc.

What Did We Do to Windows XP SP2
SYSTEM Services?

Services moved to
LOCAL SERVICE

 Windows Audio

 DHCP Client

 Windows Event Log

 COM+ Event System

 Workstation Service

 Windows Time

 Security Center

 Windows Image Acquisition

Services moved to
NETWORK SERVICE

 Cryptographic Services

 Policy Agent

 Telephony

 Terminal Services

And 48% of new services in
Windows Vista run under a
low privilege account

Compartmentalize with Service SIDs

Per Service SIDs

 Derived from
service name in SCM

 S-1-5-80-xxxx

ACL objects such
that only your service
can manipulate them

Integrated into:

 LookupAccountSid

 LookupAccountName

Example:

S-1-5-80-242729624-280608522-2219052887-3187409060-2225943459

Resolves to NT SERVICE\CryptSvc

Eliminate Unnecessary Privileges

Enumerate required privileges

 All others are removed

Processes that host multiple services get union of required
privileges

// Set up the required privileges

SERVICE_REQUIRED_PRIVILEGES_INFOW servicePrivileges;

servicePrivileges.pmszRequiredPrivileges =

(L"SeChangeNotifyPrivilege\0"

L"SeCreateGlobalPrivilege\0"

L"SeImpersonatePrivilege\0");

fRet = ChangeServiceConfig2(

schService,

SERVICE_CONFIG_REQUIRED_PRIVILEGES_INFO,

&servicePrivileges);

Restrict Network Behavior

Define service’s network requirements

 OS enforces network access policy

 e.g.: foo.exe can only open port TCP/123 inbound
 |Action=Allow|Dir=In|LPORT=123|Protocol=17|App=%SystemRoot%

\foo.exe

 If foo.exe has a vulnerability, rogue code cannot

 Make outbound connections

 Be accessed through any port other than 123 over TCP

Enforced by firewall

New svchosts

Svchost Name
Service
Account

Network
Access

Write-Restricted
Token

LocalServiceNoNetwork Local No Yes

LocalServiceRestricted Local Yes* Yes

LocalServiceNetworkRestricted Local Yes* No

NetworkServiceRestricted Network Yes* Yes

NetworkServiceNetworkRestricted Network Yes* No

LocalSystemNetworkRestricted
Local
System

Yes* No

Group Services to Take Advantage of Restrictions

*To a fixed set of network ports

Example: Comparison of DHCP Client Service

Account SYSTEM LOCAL SERVICE

Privileges 24 4

Network Identity?
Yes

(Machine Account)
No

Uses Fixed Set of
Ports?

No Yes

Data accessible only
by service?

(Service SID)

No Yes

SP2

Windows Vista Security Approach

Everything in Windows XP SP2 SDL plus

Apply least privilege throughout architecture

Automate proven techniques

Methodically apply security expertise on whole OS

Additional Defense-in-Depth mitigations

The Goal:

Stop playing Whac-a-Mole
Find and fix vulnerabilities before shipping

Code Analysis:
Never send a human to do a machine’s job

Given the code: buff[x] = 5;

Q: How big is buff, and what is the value of x?

C/C++ doesn’t associate buffers to their sizes

Meet SAL

Standard Annotation Language (SAL) provides interface
contracts to tools

 The concept is not new: think IDL in RPC

 Primary focus is finding buffer overruns

How Does SAL Work?

If cchBuf > size of buf, the loop will walk off the end of buf

void FillString(

TCHAR* buf,

size_t cchBuf,

char ch)

{

for (size_t i = 0; i < cchBuf; i++) {

buf[i] = ch;

}

}

Pointer to a TCHAR buffer

Function writes this many
characters to buf

__out_ecount(cchBuf)

void FillString(

size_t cchBuf,

char ch)

{

for (size_t i = 0; i < cchBuf; i++) {

buf[i] = ch;

}

}

How Does SAL Work?

Out parameter
(will be written to)

and is non-null

Buffer size is an
Element count

Buffer is cchBuf
elements in size

TCHAR* buf,

__out_ecount(cchBuf)

void FillString(

size_t cchBuf,

char ch)

{

for (size_t i = 0; i < cchBuf; i++) {

buf[i] = ch;

}

}

How Does SAL Work?

TCHAR* buf,

void main() {

TCHAR *buff = malloc(200 * sizeof(TCHAR));

FillString(buff,210,’x’);

}

1. Warning C6386: Buffer overrun: accessing 'argument 1',
the writable size is '200*2' bytes, but '420' bytes might be written

2. Warning C6387: 'argument 1' might be '0': this does not adhere to
'FillString' __out

WCHAR pwzTempPath[MAX_PATH];

PathCreateFromUrlW(

pwzPath,

(LPWSTR) pwzTempPath,

&cchPath,

0);

Remember this Buffer Overrun?

Buffer overrun found in IE7 Beta 2 on Jan 31, 2006.

 http://www.security-protocols.com/advisory/sp-x23-advisory.txt
<BGSOUND SRC=file://---

--------------- >

Workaround: Mozilla Firefox

(Obviously)

PREfast & SAL in Action

LWSTDAPI

PathCreateFromUrlW(

LPCWSTR pszIn,

__out_ecount(*pcchOut) LPWSTR pszOut,

__inout LPDWORD pcchOut,

DWORD dwFlags)

WCHAR pwzTempPath[MAX_PATH];

PathCreateFromUrlW(

pwzPath,

(LPWSTR) pwzTempPath,

&cchPath ,

0);

11/24/2005 5:50 AM Bug # ****932 Opened by PREfast

Description:

1. Potential overflow using expression '& pwzTempPath'

2. Buffer access is apparently unbounded by the buffer size.

3. In particular: cchPath`3485a is not constrained by any constant

4. Buffer is of length 260 elements (2 bytes/element) [size of variable or field]

5. Annotation on function PathCreateFromUrlW@16 requires that {parameter 2} is
of length >= *{parameter 3} elements (2 bytes/element)
where {parameter 2} is & pwzTempPath; {parameter 3} is & cchPath

Did SDL Succeed?

Root cause analysis leads to tools improvement

 After PnP RPC bug (Zotob worm), PREfast was improved (Warning
#2015)

 Auto-file bugs on Warning #2015

 IE bug identified immediately, filed by PREfast Nov., 2005

 Caught by SAL annotation on PathCreateFromUrlW API

 Found through internal fuzzing 8 days after public vulnerability report

 Reported through Windows Error Reporting 1 day later

 Bug was found and would have been fixed by RTM

Focus on root cause analysis, continuous tools and process
improvements in SDL pays off

File Parsers Under Attack

MS05-002: 3 ANI

MS05-009: PNG

MS05-012: OLE/COM

MS05-014: CDF

MS05-018: Fonts

MS05-020: MSRatings
(.RAT)

MS05-022: GIF

MS05-025: PNG

MS05-026: ITS

MS05-036: 9 ICM (JPG,
PNG, BMP)

MS05-050: AVI

MS05-053: EMF

MS06-002: EOT

MS06-003: TNEF

MS06-004: WMF

MS06-005: BMP

Multi-Prong Approach on Parsers

Automate what you can:

 All parsers: Internally developed general purpose fuzzer

 Over 100M manipulations by Beta 2

 Highest risk parsers: get Data-Definition-Language extensions

 Hard targets: Smart fuzzers (Examples: EMF, HTML)

 Code coverage helps in “template reduction” to improve efficiency

 Library of >19,000 JPGs optimized to 47 with same block coverage

Apply security expertise where you need it:

 Security code review + detailed program analysis on “problem
parsers”

 Extended SAL annotations for struct members

 Emit runtime stack protections more aggressively in “attack path”

Windows Vista Security Approach

Everything in Windows XP SP2 SDL plus

Apply least privilege throughout architecture

Automate proven techniques

Methodically apply security expertise on whole OS

Additional Defense-in-Depth mitigations

The Goal:

Stop playing Whac-a-Mole
Find and fix vulnerabilities before shipping

Windows
Vista Features

(>600)

Horizontal
Investigations

Externally
Commissioned

Pen-tests

Selection of
High-risk

Features (>200)

Design
Review

Implementation
Review

RPC
/GS

Network Listeners

P
ro

d
u

ct S
e
cu

rity Im
p

ro
ve

m
e
n

ts

Security Expertise:
It’s people

Selected Features

R
e
m

a
in

in
g

Features

Penetration Testing

Largest Penetration Test in Microsoft History

 Internal team of hackers

 Multiple simultaneous penetration tests

 “Blue Hat Hackers”

 20+ security consultants (aka hackers) in a room

 Access to Full Source + Symbols, specs, threat models

 Access to members of product teams, SWI experts

 All necessary expertise is within 1 building radius

 Spend anywhere from 1 week to 2 months per target

 Nothing is out-of-scope

Sampling of Findings

Process tended to yield “rabbit holes”

Contradiction in Security Assumptions

 TM #1: “We have no risk because we don’t parse anything, we just
pass things down.”

 TM #2: “We have no risk because our input is trusted; we just receive
validated content.”

Failures of Imagination

Unwise filenames

 wls0wndh.dll

 Winlogon Session0 Viewer Window Hook DLL

It Came from the Codebase…

“It’s actually quite beautiful!

Almost like a Haiku or something.”

Found by Felix Von Leitner (n.Runs)

n -= (e = (e = 0x4000 –

((d &= 0x3fff) > w ? d : w))

> n ? n : e);

Windows Vista Security Approach

Everything in Windows XP SP2 SDL plus

Apply least privilege throughout architecture

Automate proven techniques

Methodically apply security expertise on whole OS

Additional Defense-in-Depth mitigations

The Goal:

Stop playing Whac-a-Mole
Find and fix vulnerabilities before shipping

MSVC 8.0 (Visual C++ 2005, a.k.a. Whidbey):
How About a Nice Game of Chess?

Improved /GS Flag

Significantly improved stack protection in compiler

Annotations force more aggressive protection in forward
facing areas

…

Local Variables

GS Cookie

Saved ESP

…

Return Address

Heap Hardening

Lookasides no longer used

Early error detection due to block header integrity check

Dynamic algorithm adjustment based upon usage (target
attacks)

Pseudo-random base address

Heap TerminateOnCorruption

 On by default for 64bit

 On for services and most apps on x86

See Adrian Marinescu’s talk
(Black Hat US, 2006)

Function Pointer Encoding

Function pointer encoding
 Overwriting a function pointer in a predictable location is a common

technique to gain control of EIP

 Encode function pointer with secret; Decode prior to dereference

 Decreases reliability of exploit by increasing chances of process
termination due to AV on EIP, NX exception, invalid instruction, etc.

APIs
 EncodePointer - XOR w/per process cookie

 EncodeSystemPointer - XOR w/shared cookie in SharedUserData

Data Execution Protection (a.k.a. NX)

Most Windows Vista PCs have hardware support for NX

Default Mode: Opt-in

 EXEs linked with /NXCOMPAT:YES have NX turned on permanently

 All Windows services and most EXEs opted in

You can switch to Opt-out mode

 Everything has NX turned on

 Exception list is configurable in registry

What’s Been Said About DEP

http://www.uninformed.org/?v=2&a=4

mmiller at hick.org, Skywing at valhallalegends.com

As can be seen, the technique described in this
document outlines a feasible method that can be
used to circumvent the security enhancements
provided by hardware-enforced DEP…

First and foremost, the technique depends on
knowing the location of three separate
addresses…The first dependency could be broken by
instituting some form of Address Space Layout
Randomization that would thereby make the
location of the dependent code blocks unknown to
an attacker.

http://www.uninformed.org/?v=2&a=4

Address Space Layout Randomization
(ASLR)

Powerful complement to Data Execution Protection

Images must opt-in via bit in PE header: DYNAMIC_BASE
 New linker adds support; also emits reloc in EXEs

Limited number of bits available for randomness
 Main trade-off

 How difficult do you want the guess to be? vs.

 How much contiguous virtual address space do you want to be available
to apps?

 Currently set so that 99.6% of the time, your first guess will fail

Impact:
 No major hit on performance. Some wins. Some minor losses.

 Application compatibility is good with current design

All of Windows Vista is Opted-in

Agenda

Introduction

 Who Am I?

 Goals of This Talk

Windows Vista Security Approach

Retrospective Case Study

Q & A

Even if we had missed it in
Windows XP SP2

Blocked by firewall that is on by default

SDL Case Study: Zotob Worm

No remote security threat (Reviewed and
implemented Windows Server 2003
changes)

SP2

Exploit requires authentication (ACL
restricted)SP1

No remote security threat
(Security RPC Callback added)

Remote unauthenticated code execution
possible (No SDL prior to ship)

And if that failed… RPC Fuzzing and Penetration Testing

Protected by improved version of /GS and
SafeSEHAnd if that failed…

Protected by NX and ASLRAnd if that failed…

And if that failed… Still blocked by firewall that is on by default

Zotob Worm in Windows Vista?

Improved PREfast & PREfix Code Scanners

Weak Crypto Removal

3rd Party Code SDL Tracking

Threat Model Reviews

Security Bug Tracking

Mitigations (/GS, etc)

Training

Threat Models

Feature Team Code Reviews Buddy Code Reviews

PREfix

Default Permissions

PREfast

Banned APIs

SAL Annotation

FxCop

D
e
sig

n
 R

e
vie

w
s

P
e
n

e
tra

tio
n

 Te
stin

g

S
p

e
cia

l P
ro

je
cts

M
in

i S
e
cu

rity P
u

sh

Code Quality (Quality Gates)

SP2

Agenda

Introduction

 Who Am I?

 Goals of This Talk

 Quick Overview of Security Development Lifecycle

Windows Vista Security Approach

Retrospective Case Study

Q & A

Secure@Microsoft.com

This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.

Questions?

This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.

