

SCADA Protocol Fuzzer & The Tipping Point Next generation of Inline **Devices**

DVLabs

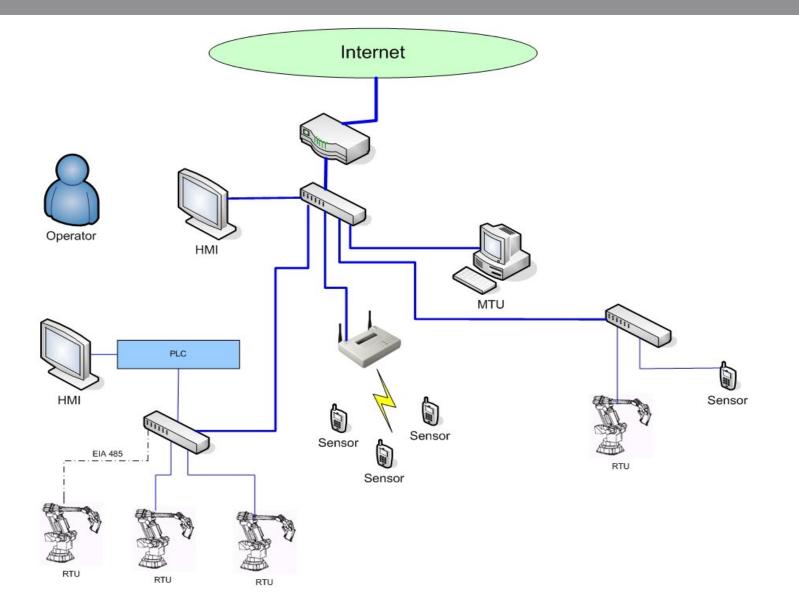
- Ganesh Devarajan

Introduction to SCADA networks

- Overview
- SCADA Protocols
- SCADA Security
 - Attack scenarios
 - Past known attacks
- SCADA Fuzzer
- Next Generation of Inline Devices
- ≻Demo

Tipping Point SCADA Definition

SCADA


- Supervisory Control and Data Acquisition is defined as a common process control application that collects data from sensors on the shop floor or in remote locations and sends them to a central computer for management and control.
- > It is the vital component of any Critical Infrastructure.
- They are used for sensing/managing real-time data
 - Water
 - Gas
 - Electricity
 - Refineries
 - Nuclear plants
 - Other manufacturing operations.

Tipping Point SCADA Infrastructure

SCADA System Components

- Operator
- Human Machine Interface (HMI)
 - Presents data to the user
 - GUIs, Schematics, Windows
- Master Terminal Unit (MTU)
 - Processes the data and presents it to HMI
- Communication channel
 - Internet, wireless, switched network, etc
- Remote Terminal Unit (RTU)
 - Abstracts data and sends it to MTU

Tipping Point SCADA Infrastructure

The need for security in SCADA systems

- When these protocols were initially created they were proprietary and were not linked to the outside world. But with the improved communication protocols they were exposed more to the Internet. The systems that control our day to day living is exposed to the outside world without any inbuilt security features.
- It is easier to take down the entire country's Critical Infrastructure.
 - Black out
- On a smaller scale you can take down the company's manufacturing plant.
 - The cooling system of the Server room
 - False reports at the manufacturing plant

Tipping Point SCADA Attack Scenarios

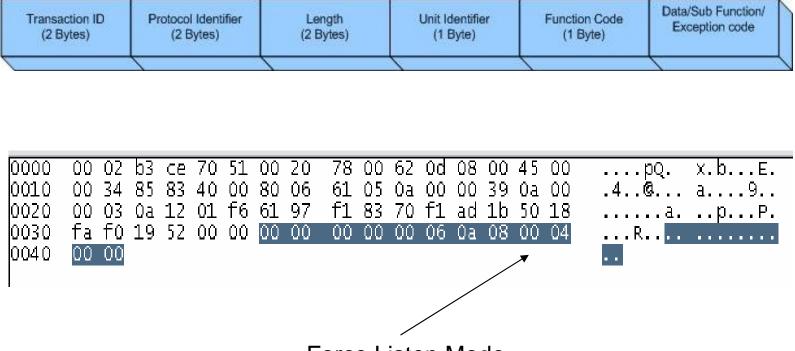
Providing False Data - The functionality of the RTU is to either read or write data into the server and the compromised RTU can write false data into the server.

- Sensors for Water pollutants
- Temperature sensors in server rooms
- Denial of Service Attack
 - Continuous sting of reboot command
- Protocol anomalies

Cyber-Attacks by Al Qaeda Feared

Washington Post, June 27, 2002 Mountain View, Calif

Information-technology contractor Vitek Boden who used his knowledge of control systems to release millions of liters of sewage into drinking water
Slammer worm affected the operation of the corporate network at Ohio's inactive Davis-Besse nuclear plant and disabled a safety monitoring system for nearly five hours in January 2003
An hacker took control of the gas pipelines run by Gazprom for around 24


hours in 1999 in Russia

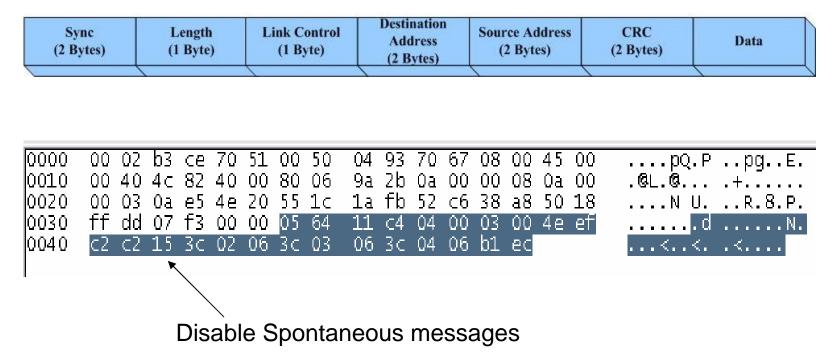
- Modbus
- DNP3
- ➤ ICCP
- UCA 2.0 and IEC 61850 Standards
- Control Area Networks
- Control Information Protocol
- DeviceNet
- ControlNet
- > OPC
- Profibus

Tipping Point SCADA Protocols

≻MODBUS

Force Listen Mode

TippingPoint SCADA Protocols


Function Code	Function Name
01	Read Coil Status
02	Read Input Status
03	Read Holding Registers
04	Read Input Registers
05	Force Single Coil
06	Preset Single Register
07	Read Exception Status
09	Program 484
0A	Poll 484
0B	Fetch Communication Event Counter
0C	Fetch Communication Event Log
0D	Program Controller
0E	Poll Controller
0F	Force Multiple Coils
10	Preset Multiple Registers
11	Report Slave ID
12	Program 884/M84
13	Reset Communication Link
14	Read General Reference
15	Write General Reference
16	Mask Write 4X Register
17	Read/Write 4X Registers
18	Read FIFO Queue

Tipping Point SCADA Protocols

Function Code	Sub-Function Code	Function Name
08	00	Return Query Data
08	01	Restart Communication Option
08	02	Return Diagnostic Register
08	03	Change ASCII Input Delimiter
08	04	Force Listen Only Mode
08	05-09	Reserved
08	0A	Clear Counters and Diagnostic Reg.
08	0B	Return Bus Message Count
08	0C	Return Bus Communication Error Count
08	0D	Return Bus Exception Error Count
08	0E	Return Slave Message Count
08	0F	Return Slave No Response Count
08	10	Return Slave NAK Count
08	11	Return Slave Busy Count
08	12	Return Bus Char. Overrun Count
08	13	Return Overrun Error Count
08	14	Clear Overrun Counter and Flag
08	15	Get/Clear Modbus Plus Statistics
08	16-UP	Reserved

Tipping Point SCADA Protocols

> DNP3

Control Byte

- Control function code
- Transport Layer byte
 - First-Final
 - Sequence Number
- Application Layer Control Byte
 - First-Final
 - Confirm
 - Sequence
- Data chunking
 - CRC DNP
 - 2 CRC bytes Every 16 bytes of data

TippingPoint SCADA Protocols

Bit	Internal Indication Flag
0	Last received message was Broadcast message
1	Class 1 Data available
2	Class 2 Data available
3	Class 3 Data available
4	Time Synchronization Required
5	Digital Output in Local
6	Device Trouble
7	Device Restarted
8	Function Code (Not Implemented)
9	Requested Object Unknown or Application Error
10	Parameters Out of range
11	Even buffer overflowed
12	Operation already executing
13	Configuration Corrupt
14	Not used (returns 0)
15	Not used (returns 0)

Tipping Point SCADA Protocols

➤ ICCP

 entation Layer ISO 8823 IT OSI Session Layer ISO 8327	
 NEL Constan Lawar IEO 9227	

> What does the SCADA Fuzzer detect?

- Protocol anomalies
- Unauthorized client/server communication
- Unauthorized client/server command execution
- Possible Denial of Service attacks
- > What protocols are we covering today?
 - MODBUS
 - DNP3

Fuzzer Components

- __init.py Defines all the aliases
- blocks.py Defines blocks and block helpers
- pedrpc.py Communication purposes and an interface with the main fuzzer
- primitives.py the fuzzer primitives includes string, static, etc.
- sessions.py Functionality for building and executing session
- sex.py Sulley's exception Handler
- > Agents
 - network_monitor.py Monitors network communications and logs the pcap files
 - process_monitor.py Detects the faults
 - vmcontrol.py Interfaced with the VM image to start, stop, suspend and reset the image along with deleting and restoring the snapshots

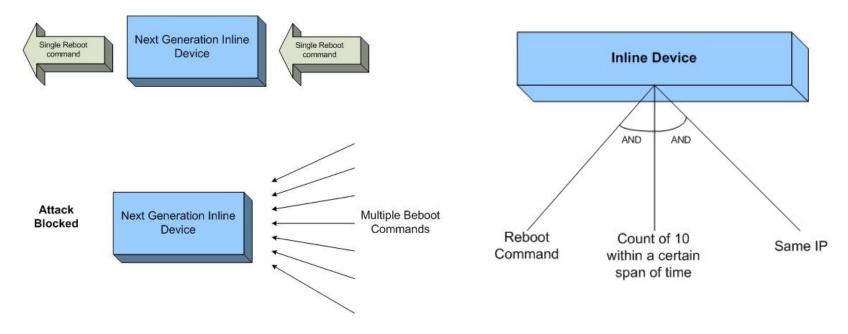
TippingPoint MODBUS Code Snipet

s_initialize("MODBUSFUNCCODE01")

- # Transaction ID
- s_static("\x00\x01")
- # Modbus Protocol Identifier
- s_static("\x00\x00")
- # Length bytes
- s_sizer("modlength", length=2, name="length", endian=">", fuzzable=False)
- if s_block_start("modlength"):
 - # Unity Identifier
 - s_static("\x0D")
 - # Function Code
 - s_byte(0x01)
 - # Data or Sub function Code
 - s_dword(0x0000000)
- s_block_end()

Tipping Point DNP3 Code Snipet

Static Length s initialize("DNP3StaticLength") if s block start("header"): s static("\x05\x64") # Start Sync Bytes. # Length Bytes we are having it as a constant length at first s_static("\x12") # Control Byte s byte(0xc4, full range=True) # Destination Address s_short(0x0400) # Source Address s_short(0x300) s block end() # Checksum of the DNP Header. s checksum("header", algorithm=dnp crc16, length=2) # The Data POrtion of the Packet if s_block_start("Data"): # Transport Layer Chunk s_byte(0xc2, full_range=True) s_string("A") + Chunkdnp3(data) # Application Chunk s_byte(0xc2, full_range=True) # Function Code s_byte(0x0d, full_range=True) # Static Data for now... s_static("AAAAAAA") -# This will fuzz a huge array of string cases.. s_block_end() s_checksum("Data", algorithm=dnp_crc16, length=2)


Tipping Point The Next Generation of Inline Devices

Reboot command

> \x0d is the Cold Reboot command in the DNP3 protocol

Just one of those could be legitimate

The SCADA Architecture and basic implementation details: Securing SCADA Systems – Ronald L. Krutz. PhD

- Modbus: <u>www.modbus.org</u>
- DNP3: <u>www.dnp3.org</u>
- ICCP: <u>www.iccp.org</u>
- Attack Details: <u>www.digitalbond.com</u>
- Modbus Protocol details: <u>http://www.modbustools.com/PI_MBUS_300.pdf</u>
- DNP3 Protocol Primer: <u>http://www.dnp.org/About/DNP3%20Primer%20Rev%20A.pdf</u>
- DNP3 User and Reference Manual by Control Microsystems: <u>https://dg.controlmicrosystems.com/Technical%20Support/Software,%20Manuals%20and%20Release%20Notes/Protocols/DNP3%20Protocol/Manuals/DNP3_User_and_Reference_Manual.pdf</u>
- ICCP Guide: <u>www.sisconet.com/downloads/usrguid5.doc</u>
- Matt Franz Wiki: <u>http://www.scadasec.net/secwiki/SecProducts</u> 24

Pedram Amini and Cody Pierce for developing the Sulley Fuzzing Framework

Tipping Point Thank you

Ganesh Devarajan

-Ganesh_Devarajan@3com.com