
SCADA Protocol Fuzzer & The
Next generation of Inline
Devices

- Ganesh Devarajan

2

Agenda

 Introduction to SCADA networks

 Overview

 SCADA Protocols

 SCADA Security

 Attack scenarios

 Past known attacks

 SCADA Fuzzer

 Next Generation of Inline Devices

Demo

3

SCADA Definition

SCADA
 Supervisory Control and Data Acquisition is defined as a common

process control application that collects data from sensors on the shop
floor or in remote locations and sends them to a central computer for
management and control.

 It is the vital component of any Critical Infrastructure.

 They are used for sensing/managing real-time data

 Water

 Gas

 Electricity

 Refineries

 Nuclear plants

 Other manufacturing operations.

4

SCADA Infrastructure

SCADA System Components

 Operator

 Human Machine Interface (HMI)

• Presents data to the user

• GUIs, Schematics, Windows

 Master Terminal Unit (MTU)

• Processes the data and presents it to HMI

 Communication channel

• Internet, wireless, switched network, etc

 Remote Terminal Unit (RTU)

• Abstracts data and sends it to MTU

5

SCADA Infrastructure

6

Need for SCADA Security

The need for security in SCADA systems

— When these protocols were initially created they were proprietary and
were not linked to the outside world. But with the improved
communication protocols they were exposed more to the Internet. The
systems that control our day to day living is exposed to the outside world
without any inbuilt security features.

— It is easier to take down the entire country’s Critical Infrastructure.

• Black out

— On a smaller scale you can take down the company’s manufacturing
plant.

• The cooling system of the Server room

• False reports at the manufacturing plant

7

SCADA Attack Scenarios

 Providing False Data - The functionality of the RTU is to either read
or write data into the server and the compromised RTU can write false
data into the server.

 Sensors for Water pollutants

 Temperature sensors in server rooms

 Denial of Service Attack

 Continuous sting of reboot command

Protocol anomalies

8

SCADA Attacks

Cyber-Attacks by Al Qaeda Feared

Washington Post, June 27, 2002 Mountain View, Calif

 Information-technology contractor Vitek Boden who used his knowledge of

control systems to release millions of liters of sewage into drinking water

Slammer worm affected the operation of the corporate network at Ohio's

inactive Davis-Besse nuclear plant and disabled a safety monitoring system for

nearly five hours in January 2003

An hacker took control of the gas pipelines run by Gazprom for around 24

hours in 1999 in Russia

9

SCADA Protocols

 Modbus

 DNP3

 ICCP

 UCA 2.0 and IEC 61850 Standards

 Control Area Networks

 Control Information Protocol

 DeviceNet

 ControlNet

 OPC

 Profibus

10

SCADA Protocols

MODBUS

Force Listen Mode

11

SCADA Protocols

Read/Write 4X Registers 17

Reset Communication Link 13

Read General Reference 14

Write General Reference 15

Mask Write 4X Register 16

Preset Multiple Registers 10

Report Slave ID 11

Program 884/M84 12

Force Multiple Coils 0F

Read FIFO Queue 18

Poll Controller 0E

Program Controller 0D

Fetch Communication Event Log 0C

Fetch Communication Event Counter 0B

Poll 484 0A

Program 484 09

Read Exception Status 07

Preset Single Register 06

Force Single Coil 05

Read Input Registers 04

Read Holding Registers 03

Read Input Status 02

Read Coil Status 01

Function NameFunction Code

12

SCADA Protocols

Get/Clear Modbus Plus Statistics1508

Reserved16-UP08

Clear Overrun Counter and Flag1408

Return Overrun Error Count1308

Return Bus Char. Overrun Count1208

Return Slave Busy Count1108

Return Slave NAK Count1008

Return Slave No Response Count0F08

Return Slave Message Count0E08

Return Bus Exception Error Count0D08

Return Bus Communication Error Count0C08

Return Bus Message Count0B08

Clear Counters and Diagnostic Reg.0A08

Reserved05-0908

Force Listen Only Mode0408

Change ASCII Input Delimiter0308

Return Diagnostic Register0208

Restart Communication Option0108

Return Query Data0008

Function NameSub-Function CodeFunction Code

13

SCADA Protocols

 DNP3

Disable Spontaneous messages

14

SCADA Protocols

 Control Byte

 Control function code

 Transport Layer byte

 First-Final

 Sequence Number

Application Layer Control Byte

 First-Final

 Confirm

 Sequence

Data chunking

 CRC DNP

 2 CRC bytes Every 16 bytes of data

15

SCADA Protocols

Even buffer overflowed 11

Operation already executing 12

Configuration Corrupt 13

Not used (returns 0) 14

Not used (returns 0) 15

Parameters Out of range 10

Requested Object Unknown or Application Error 9

Function Code (Not Implemented) 8

Device Restarted 7

Device Trouble 6

Digital Output in Local 5

Time Synchronization Required 4

Class 3 Data available 3

Class 2 Data available 2

Class 1 Data available 1

Last received message was Broadcast message 0

Internal Indication FlagBit

16

SCADA Protocols

 ICCP

17

SCADA Fuzzer

What does the SCADA Fuzzer detect?

 Protocol anomalies

 Unauthorized client/server communication

 Unauthorized client/server command execution

 Possible Denial of Service attacks

What protocols are we covering today?

 MODBUS

 DNP3

18

SCADA Fuzzer

 Fuzzer Components

 __init.py – Defines all the aliases

 blocks.py – Defines blocks and block helpers

 pedrpc.py – Communication purposes and an interface with the main
fuzzer

 primitives.py – the fuzzer primitives includes string, static, etc

 sessions.py – Functionality for building and executing session

 sex.py – Sulley’s exception Handler

 Agents

 network_monitor.py – Monitors network communications and logs the
pcap files

 process_monitor.py – Detects the faults

 vmcontrol.py – Interfaced with the VM image to start, stop, suspend and
reset the image along with deleting and restoring the snapshots

19

MODBUS Code Snipet

s_initialize("MODBUSFUNCCODE01")
Transaction ID
s_static("\x00\x01")
Modbus Protocol Identifier
s_static("\x00\x00")
Length bytes
s_sizer("modlength", length=2, name="length", endian=">", fuzzable=False)
if s_block_start("modlength"):

Unity Identifier
s_static("\x0D")
Function Code
s_byte(0x01)
Data or Sub function Code
s_dword(0x00000000)

s_block_end()

20

DNP3 Code Snipet

Static Length
s_initialize("DNP3StaticLength")
if s_block_start("header"):

s_static("\x05\x64") # Start Sync Bytes.
Length Bytes we are having it as a constant length at first
s_static("\x12")
Control Byte
s_byte(0xc4, full_range=True)
Destination Address
s_short(0x0400)
Source Address
s_short(0x300)
s_block_end()

Checksum of the DNP Header.
s_checksum("header", algorithm=dnp_crc16, length=2)

The Data POrtion of the Packet
if s_block_start("Data"):

Transport Layer Chunk
s_byte(0xc2, full_range=True)
Application Chunk
s_byte(0xc2, full_range=True)
Function Code
s_byte(0x0d, full_range=True)
Static Data for now..
s_static("AAAAAAA")
This will fuzz a huge array of string cases..
s_block_end()

s_checksum("Data", algorithm=dnp_crc16, length=2)

s_string(“A”) + Chunkdnp3(data)

21

Section Divider

The Next Generation of Inline
Devices

22

The Next Generation of Inline Devices

 Reboot command

 \x0d is the Cold Reboot command in the DNP3 protocol

 Just one of those could be legitimate

23

Section Divider

Demo

24

References

 The SCADA Architecture and basic implementation details:
Securing SCADA Systems – Ronald L. Krutz. PhD

 Modbus: www.modbus.org

 DNP3: www.dnp3.org

 ICCP: www.iccp.org

 Attack Details: www.digitalbond.com

 Modbus Protocol details:
http://www.modbustools.com/PI_MBUS_300.pdf

 DNP3 Protocol Primer:
http://www.dnp.org/About/DNP3%20Primer%20Rev%20A.pdf

 DNP3 User and Reference Manual by Control Microsystems:
https://dg.controlmicrosystems.com/Technical%20Support/Softw
are,%20Manuals%20and%20Release%20Notes/Protocols/DNP3%
20Protocol/Manuals/DNP3_User_and_Reference_Manual.pdf

 ICCP Guide: www.sisconet.com/downloads/usrguid5.doc

Matt Franz Wiki: http://www.scadasec.net/secwiki/SecProducts

25

Acknowledgements

 Pedram Amini and Cody Pierce for developing the Sulley Fuzzing
Framework

Thank you

Ganesh Devarajan

-Ganesh_Devarajan@3com.com

