S XSS SOLVABLE!?

Don Ankney ¢ LayerOne 2009




DISCLAIMER

This presentation represents personal work and has not
been approved or vetted by Microsoft. | am solely
responsible for rts content.

Saturday, May 23, 2009



OUTLINE

» XSS as a generic Injection attack.
* What makes XSS unique, why Iit's important.
» Defending against XSS in general.
* Web Application Defense
* One effective architecture design pattern.
Seelitc help.

Bl e o g0 from here.

Saturday, May 23, 2009



DEFINING THE PROBLEM




INJECTION FLAWS

G ARlicreicted code canl bel injected: EIDAROIMIEHSEREE
XAML, PHE Python, Ruby, and most infamously, SQL.

* XSS Is simply another form of interpreter injection, usually
using Javascript.

* We can solve 1t just like we would solve any other injection
Bsblem™.

* except SQL injection -- we have a better solution there.

Saturday, May 23, 2009



PREVENTING INJECTION

» Always keep track of your trust boundaries.
» Validate/sanrtize your inputs.

B ieterlhencode your outputs.

- Use white lists, not black lists.

= E e cithic Principdlior least priviiEge,

» Validate your assumptions.

Saturday, May 23, 2009



TRUST BOUNDARIES

Application

Database sal

LDAP
web data stores




WHY XS5 IS DIFFERENT

» Most injection flaws attack your server.

« XSS attacks the end user -- it runs arbitrary code In their
browser.

* The browser Is behind your firewall and Is acting within the
users security context.

Saturday, May 23, 2009



YOU CAN DO SOME NASTY
THINGS WITH |JAVASCRIPT

* Javascript can control what appears on screen.

* Javascript has access to your history.

» Srtes often store session tokens in GET request.
* Javascript can intercept cookies.

» Javascript can enumerate your network.




XSS TAXONOMY




REFLECTED X85

Attack
Victim =
Attacker G ¢ Web App
e Browser -
string SS

* Victim browser submits an “evil” request that contains
Javascript.

* [he web application then reflects that javascript back
to the victim browser, which then executes Iit.

Saturday, May 23, 2009



REFLECTED X585

» Attack does not persist across users, sessions, or pages.

* |t Is only reflected back to the user that submits the
malicious url.

* This Is relatively easy to detect remotely via a scanner/fuzzer.

Saturday, May 23, 2009



PERSISTENT X55

Attack string
Attacker —_— Webpage

B

—
XSS

* An attacker stores an attack string in a web application.

Database

» Visitors to that site access Infected pages causing
Javascript execution.

Saturday, May 23, 2009



PERSISTENT X55

» Can persist across user, sessions, and pages.

* It depends on application context and who can access the
infected pages.

* Very difficult to detect remotely via scanning/fuzzing.

* [here are many paths through an application, scanning is too
nolisy for a production system.

* Best identified by code analysis.

Saturday, May 23, 2009



HYBRID X85

VWebpage o
A \ﬁA

Session Data

Attack

s Victim
e rowser

XSS VWebpage /
B

Attack

* Victim browser submits “evil” url.
» Attack string Is stored as session data.

» Session data Is returned to browser on another page,
executing javascript.

Saturday, May 23, 2009



HYBRID X85

» Attacks are not persistent across sessions.
» Attacks do persist across pages.
» Attacks may persist across users.

* Think about “who's online™ functionality.
* Extremely difficult to detect remotely.

B e qlire specific request sequences.

Saturday, May 23, 2009



DETECTING INJECTION
FLAWS REMOTELY




SCANNING FOR REFLECTED
XSS VULNERABILITIES

R GEREEcliresta simple fuzzer.
» Send an attack string.
» Check for appropriately encoded returns.

* The most difficult part is maintaining a current attack string list.




SCANNING FOR PERSISTENT
XSS VULNERABILITIES

SllEl el ol scannher Is Immature.

* Requires mapping input cause vs. output effect
without knowledge of application state.

* A persistent XSS scan I1s extremely nolisy.

* Each form has to have unigue data submitted In
order to map persistent data across the site.

* Running an attack list against the mapped site creates
one persistent record per attack string.




DETECTING INJECTION
FLAVYS LOCALLE




AVAILABLE TECHNIQUES

» Static code analysis
e @hnines the source code
* Dynamic analysis

* Examines application state




STATIC CODE ANALYSIS

 Manual code review.

» Static code analyzers:

e (PP

. CATNET (ASPNET)

@Eieeclre (lava/ASENET/PHP)




WHAI STATIC ANALYSIS CAN
il B

* Input sanrtization

» Really only boolean, doesn’t evaluate quality.

» Output encoding

» Are both application (html) and character encoding explicrt!
» Data flow

» Does anything skip sanitization or encoding?




DYNAMIC CODE ANALYSIS

* [he only way to consider application state.

- Remember that persistent and hybrid XS5 are state-
dependent.

» Internal representation of data Is tied to risk.
BRRicrENaen 4 lot of existing tools.

» Most existing are run-time [PS-style tools.

Saturday, May 23, 2009



DEFENDING AGAINS T X55




THERE ARE THREE CONTROL
POINTS FOR X855

Browser

I'T Infrastructure

XSS can be mitigated at all three points.




T HE BROWSER

» Different browsers will execute different code snippets.
» O9, |[E6: <BODY BACKGROUND="javascriptaalert(’XsS');">

e FF2, O9: <META HTTP-EQUIV="refresh" CONTENT="0:url=data:text/
htmlbase64,PHNjcmiwdD5hbGVydCanWFNTyk8L 3NjcmiwdDAK">

» Current browsers are much better than previous generations.

Saturday, May 23, 2009



[T INFRASTRUCTURE

* Web application firewalls.
* Intrusion prevention systems.

- Web application sandboxes.

» All of these are signature-based defenses.




WEB APPLICATION DEFENSE




[T'S ALL ABOUT PROCESS

Retu rmn

Request

©-0-0-6

BlnSNreqlifes a consistent and enforced arcmitecilgel
approach.

* [SE PHP 3/4, and classic ASP don't lend themselves to
this approach.




DECODE YOUR INPUT

Accept-Language: en-us,en;qg=0.5
Accept-Charset: IS0-8859-1,utf-8;g=0.7,%;9=0.7

* If the request specified an encoding, you might want to
assume that encoding for parameters.

« HT TP defaults to ISO-8859-|

» Convert the request to your application’s internal
representation.

Saturday, May 23, 2009



prCURITY CHECISS

» This Is where you apply your whitelists.

* Remember the principal of least privilege and use the most
restrictive patterns possible.

* It you must accept markup tags, parse the tags and replace
them with tokens.

» Consider whitelisting any paths or URLs.

Saturday, May 23, 2009



SANITIZING HTML

* There are a number of libraries avallable to do this for you.

* Microsoft AntiXSS ((NET),
« OWAGSP AntiSamy (Java, NET, Python).

« HTML Purifier (PHP)




WRITING YOUR OWN
SANITIZATION LIBRARY

e Rlitelist ML tags,

* Be as restrictive as possible.

* If allowing high-risk tasks (such as <a> and <img>), consider whitelisting
their targets.

- Replace all the allowed tags with symbols. Parse them for properties.
B Slieitemithis way,

- Replace the symbols prior to encoding. This way, everything is
constructed in your code and not passed from the user.




ENCODE YOUR OUTPUT

* Most commonly, encode using html entities.
» After entity encoding, replace your tokens with actual tags.

* It the final output I1s not html, encode accordingly.

IR Eeutputting AJAX, XANMIL, etc.

Saturday, May 23, 2009



EXPLICITLY DECLARE YOUR
CRARACTER SEH

* Your web server can do It for you:

* AddCharset UTF-8 .php (Apache .htaccess)

* I In doubt, override your web server:

« header('Content-type: text/html; charset=utf-8'); (PHP .htaccess)

+ <%Response.charset="utf-8"%> (ASP.NET)

« print "Content-Type: text/html; charset=utf-8\n\n"; (Perl)

Saturday, May 23, 2009



e OUR SECURITY CHESHS
ACTUALLY WORK!

foreach ($_GET as $secvalue) {
if (Ceregi("<[A>]*script*\"?[A>]*>", $secvalue)) ||
(eregi("<[A>]*object*\"?[A>]*>", $secvalue)) ||
Ceregi("<[A>]*1iframe*\"?[A>]*>", $secvalue)) ||
(eregi("<[A>]*applet*\"?[A>]*>", $secvalue)) ||
(eregi("<[A>T*meta*\"?[A>]*>", $secvalue)) ||
(eregi("<[A>]*style*\"?[A>]*>", $secvalue)) ||
Ceregi("<[A>T*form*\"?[A>]*>", $secvalue)) ||
Ceregi("\([A>]*\"?[A)]I*\)", $secvalue)) |1
(eregi("\"", $secvalue))) {
die ("<center><img src=images/logo.gif><br><br><b>The html tags you attempted to use are not allowed</
b><br><br>[ <a href=\"javascript:history.go(-1)\"><b>Go Back</b></a> ]");

}
}

foreach ($_POST as $secvalue) {
if (Ceregi("<[A>T*script*\"?[A>]*>", $secvalue)) || Ceregi("<[A>]*style*\"?[A>]*>", $secvalue))) {
die ("<center><img src=images/logo.gif><br><br><b>The html tags you attempted to use are not allowed</
b><br><br>[ <a href=\"javascript:history.go(-1)\"><b>Go Back</b></a> ]1");

}
g

This I1s actual code In a popular CMS.

Saturday, May 23, 2009



eS| ING ARCHITEC TURES
PAT TERN IMPLEMEN TATION




VALIDATES INPU T
SANITIZATION

Web Fuzzer acasu- el Santization Validator
attack strings ored strings

Virtual Machine




VALIDATES OUTPUT
ENCODING

Endcoding Validator Pt Database Fuzzer

Stored strings \ / attack strings
(5 \ / )

ST Database

Target

App

N B
Virtual Machine




'DEMO]




TOOL BENEFTS

* Finds fundamental problems in software design

» More complex attacks rely on erther sanitization or encoding
[€Rs—"Oroken.

BBIEIEEE persistent XS5 attack vectors.

* |n a dedicated VM, noise doesn’t matter;

Saturday, May 23, 2009



TOOL LIMITATIONS

» Only works with database-resident state data
» Cookies, header, etc are also valid X5S threats.
* Only works against HTML forms

»* Can be extended to include AJAX, headers, cookies, etc.

Saturday, May 23, 2009



TOOL PLANS

le =t from PHP to C#.

» Create a PM-friendly interface so that anyone can run It.
- Add authentication integration:

& =D [erms, OpenlD.

* Expand it to include non-form fuzzing.

Saturday, May 23, 2009



WHY IS THIS HARD!?

» Legacy applications and languages often don't lend
themselves to this architectural pattern.

* Browser behavior is often unexpected and gibberish
e e execlied.

» Application complexity makes it difficult to predict
state, just like a client application.

» Applications and developers change over time.

Saturday, May 23, 2009



CALL TO ACTION

B llitedsetier coge.
- Use current browser technology.
* Honestly assess your enterprise.

* Do you have lots of legacy code!?




"M WEB 2.0

» Blog: http://hackerco.de

» LinkedIn: http://www.linkedin.com/pub/don-ankney/6/2 1 3/65 |

» Iwitter: http://twitter.com/dankney

* E-mall: dankney@hackerco.de

Saturday, May 23, 2009


http://www.linkedin.com/pub/don-ankney/6/213/651
http://www.linkedin.com/pub/don-ankney/6/213/651
http://twitter.com/dankney
http://twitter.com/dankney
mailto:dankney@hackerco.de
mailto:dankney@hackerco.de

BIBLIOGRAPHY

» Alshanetsky, llia. Php|Architect's Guide to Php Security|. Marco Tabini &
Associates, Inc, 2005.

=R EIN ez S Kiezun, A, Dolby, |, Tip, E, and Dig, D FndinetBiiestigk e e
Applications Using Dynamic Test Generation and Explicit State Model
Checking.” dspace.mit.edu (2009):

* Ernst, M., Kiezun, A., Guo, P ., Jayaraman, K., and Ernst, M. D."Automatic

Creation of 5gl Injection and Cross-Site Scripting Attacks.” dspace.mit.edu
(2008):

* Fogie, Seth, Jeremiah Grossman, Robert Hansen, Anton Rager, and Petko D.
Petkov. Xss Attacks: Cross Site Scripting Explorts and Defense. Syngress, 2007/.

Saturday, May 23, 2009



BIBLIOGRAPHY

» Johns, M., Engelmann, B., and Posegga, . Xssds: Server-Side Detection of Cross-

Site Scripting Attacks.” Proceedings of the 2008 Annual Computer Security
Applications Conference (2008): 335-44.

- Stuttard, Dafydd, and Marcus Pinto. The Web Application Hacker's Handbook:
Discovering and Explorting Security Flaws. Wiley, 2007.

- Vogt, P, Nentwich, F, Jovanovic, N,, Kirda, E.,, Kruegel, C., and Vigna, G."Cross-Site
Scripting Prevention With Dynarmc Data Tainting and Static Analysis.” Proceeding
of the Network and Distributed System Security Symposium (NDSS'07) (2007):

» Wassermann, G., and Su, Z."Static Detection of Cross-Site Scripting
Vulnerabllities.” Proceedings of the 30th international conference on Software

engineering (2008): | /1-80.

Saturday, May 23, 2009



QUESTIONS!




