
IS XSS SOLVABLE?
Don Ankney • LayerOne 2009

Saturday, May 23, 2009

DISCLAIMER

This presentation represents personal work and has not
been approved or vetted by Microsoft. I am solely
responsible for its content.

Saturday, May 23, 2009

OUTLINE
• XSS as a generic injection attack.

• What makes XSS unique, why it’s important.

• Defending against XSS in general.

• Web Application Defense

• One effective architecture design pattern.

• Tool to help.

• Where to go from here.

Saturday, May 23, 2009

DEFINING THE PROBLEM

Saturday, May 23, 2009

INJECTION FLAWS

• Any interpreted code can be injected: LDAP, XML, HTTP,
XAML, PHP, Python, Ruby, and most infamously, SQL.

• XSS is simply another form of interpreter injection, usually
using Javascript.

• We can solve it just like we would solve any other injection
problem*.

* except SQL injection -- we have a better solution there.

Saturday, May 23, 2009

PREVENTING INJECTION

• Always keep track of your trust boundaries.

• Validate/sanitize your inputs.

• Properly encode your outputs.

• Use white lists, not black lists.

• Exercise the principal of least privilege.

• Validate your assumptions.

Saturday, May 23, 2009

TRUST BOUNDARIES

Application

Database

User System
Forms
headers
cookies
ajax
files

Files
services
Processes

SQL
LDAP
web data stores

Saturday, May 23, 2009

WHY XSS IS DIFFERENT

• Most injection flaws attack your server.

• XSS attacks the end user -- it runs arbitrary code in their
browser.

• The browser is behind your firewall and is acting within the
user’s security context.

Saturday, May 23, 2009

YOU CAN DO SOME NASTY
THINGS WITH JAVASCRIPT

• Javascript can control what appears on screen.

• Javascript has access to your history.

• Sites often store session tokens in GET request.

• Javascript can intercept cookies.

• Javascript can enumerate your network.

Saturday, May 23, 2009

XSS TAXONOMY

Saturday, May 23, 2009

REFLECTED XSS

• Victim browser submits an “evil” request that contains
javascript.

• The web application then reflects that javascript back
to the victim browser, which then executes it.

Web AppVictim
Browser

Attack

XSS

Attacker Attack

URL string

Saturday, May 23, 2009

REFLECTED XSS

• Attack does not persist across users, sessions, or pages.

• It is only reflected back to the user that submits the
malicious url.

• This is relatively easy to detect remotely via a scanner/fuzzer.

Saturday, May 23, 2009

PERSISTENT XSS

• An attacker stores an attack string in a web application.

• Visitors to that site access infected pages causing
javascript execution.

Database

Webpage

Victim Webpage

Attacker
Attack string

XSS

Saturday, May 23, 2009

PERSISTENT XSS

• Can persist across user, sessions, and pages.

• It depends on application context and who can access the
infected pages.

• Very difficult to detect remotely via scanning/fuzzing.

• There are many paths through an application, scanning is too
noisy for a production system.

• Best identified by code analysis.

Saturday, May 23, 2009

HYBRID XSS

• Victim browser submits “evil” url.

• Attack string is stored as session data.

• Session data is returned to browser on another page,
executing javascript.

Webpage
A

Victim
BrowserAttacker Attack

URL

Session Data

Webpage
B

XSS

Attack Attack

Attack

Saturday, May 23, 2009

HYBRID XSS

• Attacks are not persistent across sessions.

• Attacks do persist across pages.

• Attacks may persist across users.

• Think about “who’s online” functionality.

• Extremely difficult to detect remotely.

• May require specific request sequences.

Saturday, May 23, 2009

DETECTING INJECTION
FLAWS REMOTELY

Saturday, May 23, 2009

SCANNING FOR REFLECTED
XSS VULNERABILITIES

• This requires a simple fuzzer.

• Send an attack string.

• Check for appropriately encoded returns.

• The most difficult part is maintaining a current attack string list.

Saturday, May 23, 2009

SCANNING FOR PERSISTENT
XSS VULNERABILITIES

• This sort of scanner is immature.

• Requires mapping input cause vs. output effect
without knowledge of application state.

• A persistent XSS scan is extremely noisy.

• Each form has to have unique data submitted in
order to map persistent data across the site.

• Running an attack list against the mapped site creates
one persistent record per attack string.

Saturday, May 23, 2009

DETECTING INJECTION
FLAWS LOCALLY

Saturday, May 23, 2009

AVAILABLE TECHNIQUES

• Static code analysis

• Examines the source code

• Dynamic analysis

• Examines application state

Saturday, May 23, 2009

STATIC CODE ANALYSIS

• Manual code review.

• Static code analyzers:

• Pixy (PHP)

• CAT.NET (ASP.NET)

• CodeSecure (Java/ASP.NET/PHP)

Saturday, May 23, 2009

WHAT STATIC ANALYSIS CAN
DETECT

• Input sanitization

• Really only boolean, doesn’t evaluate quality.

• Output encoding

• Are both application (html) and character encoding explicit?

• Data flow

• Does anything skip sanitization or encoding?

Saturday, May 23, 2009

DYNAMIC CODE ANALYSIS

• The only way to consider application state.

• Remember that persistent and hybrid XSS are state-
dependent.

• Internal representation of data is tied to risk.

• There aren’t a lot of existing tools.

• Most existing are run-time IPS-style tools.

Saturday, May 23, 2009

DEFENDING AGAINST XSS

Saturday, May 23, 2009

THERE ARE THREE CONTROL
POINTS FOR XSS

Browser Database

IT Infrastructure

Web
Application

XSS can be mitigated at all three points.

Saturday, May 23, 2009

THE BROWSER

• Different browsers will execute different code snippets.

• O9, IE6: <BODY BACKGROUND="javascript:alert('XSS');">

• FF2, O9: <META HTTP-EQUIV="refresh" CONTENT="0;url=data:text/
html;base64,PHNjcmlwdD5hbGVydCgnWFNTJyk8L3NjcmlwdD4K">

• Current browsers are much better than previous generations.

Saturday, May 23, 2009

IT INFRASTRUCTURE

• Web application firewalls.

• Intrusion prevention systems.

• Web application sandboxes.

• All of these are signature-based defenses.

Saturday, May 23, 2009

WEB APPLICATION DEFENSE

Saturday, May 23, 2009

IT’S ALL ABOUT PROCESS

• This requires a consistent and enforced architectural
approach.

• JSP, PHP 3/4, and classic ASP don’t lend themselves to
this approach.

Request Return

Decode EncodeLogicSecurity
Checks

Saturday, May 23, 2009

DECODE YOUR INPUT

• If the request specified an encoding, you might want to
assume that encoding for parameters.

• HTTP defaults to ISO-8859-1

• Convert the request to your application’s internal
representation.

Accept-Language: en-us,en;q=0.5
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Saturday, May 23, 2009

SECURITY CHECKS

• This is where you apply your whitelists.

• Remember the principal of least privilege and use the most
restrictive patterns possible.

• If you must accept markup tags, parse the tags and replace
them with tokens.

• Consider whitelisting any paths or URLs.

Saturday, May 23, 2009

SANITIZING HTML

• There are a number of libraries available to do this for you.

• Microsoft AntiXSS (.NET),

• OWASP AntiSamy (Java, .NET, Python).

• HTML Purifier (PHP)

Saturday, May 23, 2009

WRITING YOUR OWN
SANITIZATION LIBRARY

• Whitelist HTML tags.

• Be as restrictive as possible.

• If allowing high-risk tasks (such as <a> and), consider whitelisting
their targets.

• Replace all the allowed tags with symbols. Parse them for properties.

• Store them this way.

• Replace the symbols prior to encoding. This way, everything is
constructed in your code and not passed from the user.

Saturday, May 23, 2009

ENCODE YOUR OUTPUT

• Most commonly, encode using html entities.

• After entity encoding, replace your tokens with actual tags.

• If the final output is not html, encode accordingly.

• XML if outputting AJAX, XAML, etc.

Saturday, May 23, 2009

EXPLICITLY DECLARE YOUR
CHARACTER SET

• Your web server can do it for you:

• AddCharset UTF-8 .php (Apache .htaccess)

• If in doubt, override your web server :

• header('Content-type: text/html; charset=utf-8'); (PHP .htaccess)

• <%Response.charset="utf-8"%> (ASP.NET)

• print "Content-Type: text/html; charset=utf-8\n\n"; (Perl)

Saturday, May 23, 2009

DO YOUR SECURITY CHECKS
ACTUALLY WORK?

foreach ($_GET as $secvalue) {
 if ((eregi("<[^>]*script*\"?[^>]*>", $secvalue)) ||
	 (eregi("<[^>]*object*\"?[^>]*>", $secvalue)) ||
	 (eregi("<[^>]*iframe*\"?[^>]*>", $secvalue)) ||
	 (eregi("<[^>]*applet*\"?[^>]*>", $secvalue)) ||
	 (eregi("<[^>]*meta*\"?[^>]*>", $secvalue)) ||
	 (eregi("<[^>]*style*\"?[^>]*>", $secvalue)) ||
	 (eregi("<[^>]*form*\"?[^>]*>", $secvalue)) ||
	 (eregi("\([^>]*\"?[^)]*\)", $secvalue)) ||
	 (eregi("\"", $secvalue))) {
 die ("<center>

The html tags you attempted to use are not allowed</
b>

[Go Back]");
 }
}

foreach ($_POST as $secvalue) {
 if ((eregi("<[^>]*script*\"?[^>]*>", $secvalue)) ||	(eregi("<[^>]*style*\"?[^>]*>", $secvalue))) {
 die ("<center>

The html tags you attempted to use are not allowed</
b>

[Go Back]");
 }
}

This is actual code in a popular CMS.

Saturday, May 23, 2009

TESTING ARCHITECTURAL
PATTERN IMPLEMENTATION

Saturday, May 23, 2009

VALIDATES INPUT
SANITIZATION

Web Fuzzer

Target
App

Database

Virtual Machine

Sanitization Validator attack strings

attack strings Stored strings

Saturday, May 23, 2009

VALIDATES OUTPUT
ENCODING

Endcoding Validator

Target
App

Database

Virtual Machine

Database Fuzzerattack strings

attack stringsStored strings

Saturday, May 23, 2009

[DEMO]

Saturday, May 23, 2009

TOOL BENEFITS

• Finds fundamental problems in software design

• More complex attacks rely on either sanitization or encoding
to be broken.

• Detects persistent XSS attack vectors.

• In a dedicated VM, noise doesn’t matter.

Saturday, May 23, 2009

TOOL LIMITATIONS

• Only works with database-resident state data

• Cookies, header, etc are also valid XSS threats.

• Only works against HTML forms

• Can be extended to include AJAX, headers, cookies, etc.

Saturday, May 23, 2009

TOOL PLANS

• Move it from PHP to C#.

• Create a PM-friendly interface so that anyone can run it.

• Add authentication integration:

• Web forms, OpenID.

• Expand it to include non-form fuzzing.

Saturday, May 23, 2009

WHY IS THIS HARD?

• Legacy applications and languages often don’t lend
themselves to this architectural pattern.

• Browser behavior is often unexpected and gibberish
code can be executed.

• Application complexity makes it difficult to predict
state, just like a client application.

• Applications and developers change over time.

Saturday, May 23, 2009

CALL TO ACTION

• Write better code.

• Use current browser technology.

• Honestly assess your enterprise.

• Do you have lots of legacy code?

Saturday, May 23, 2009

I’M WEB 2.0

• Blog: http://hackerco.de

• LinkedIn: http://www.linkedin.com/pub/don-ankney/6/213/651

• Twitter : http://twitter.com/dankney

• E-mail: dankney@hackerco.de

Saturday, May 23, 2009

http://www.linkedin.com/pub/don-ankney/6/213/651
http://www.linkedin.com/pub/don-ankney/6/213/651
http://twitter.com/dankney
http://twitter.com/dankney
mailto:dankney@hackerco.de
mailto:dankney@hackerco.de

BIBLIOGRAPHY

• Alshanetsky, Ilia. Php|Architect's Guide to Php Security|. Marco Tabini &
Associates, Inc, 2005.

• Ernst, M., Artzi, S., Kiezun, A., Dolby, J., Tip, F., and Dig, D. “Finding Bugs in Web
Applications Using Dynamic Test Generation and Explicit State Model
Checking.” dspace.mit.edu (2009):

• Ernst, M., Kiezun, A., Guo, P. J., Jayaraman, K., and Ernst, M. D. “Automatic
Creation of Sql Injection and Cross-Site Scripting Attacks.” dspace.mit.edu
(2008):

• Fogie, Seth, Jeremiah Grossman, Robert Hansen, Anton Rager, and Petko D.
Petkov. Xss Attacks: Cross Site Scripting Exploits and Defense. Syngress, 2007.

Saturday, May 23, 2009

BIBLIOGRAPHY

• Johns, M., Engelmann, B., and Posegga, J. “Xssds: Server-Side Detection of Cross-
Site Scripting Attacks.” Proceedings of the 2008 Annual Computer Security
Applications Conference (2008): 335-44.

• Stuttard, Dafydd, and Marcus Pinto. The Web Application Hacker's Handbook:
Discovering and Exploiting Security Flaws. Wiley, 2007.

• Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., and Vigna, G. “Cross-Site
Scripting Prevention With Dynamic Data Tainting and Static Analysis.” Proceeding
of the Network and Distributed System Security Symposium (NDSS’07) (2007):

• Wassermann, G., and Su, Z. “Static Detection of Cross-Site Scripting
Vulnerabilities.” Proceedings of the 30th international conference on Software
engineering (2008): 171-80.

Saturday, May 23, 2009

QUESTIONS?

Saturday, May 23, 2009

