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DISCLAIMER 

This presentation represents personal work and has not 
been approved or vetted by Microsoft. I am solely 
responsible for its content.
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OUTLINE
• XSS as a generic injection attack.

• What makes XSS unique, why it’s important.

• Defending against XSS in general.

• Web Application Defense

• One effective architecture design pattern.

• Tool to help.

• Where to go from here.
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DEFINING THE PROBLEM
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INJECTION FLAWS

• Any interpreted code can be injected: LDAP, XML, HTTP, 
XAML, PHP, Python, Ruby, and most infamously, SQL.

• XSS is simply another form of interpreter injection, usually 
using Javascript.

• We can solve it just like we would solve any other injection 
problem*.

* except SQL injection -- we have a better solution there.
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PREVENTING INJECTION

• Always keep track of your trust boundaries. 

• Validate/sanitize your inputs.

• Properly encode your outputs.

• Use white lists, not black lists.

• Exercise the principal of least privilege.

• Validate your assumptions.
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TRUST BOUNDARIES
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WHY XSS IS DIFFERENT

• Most injection flaws attack your server. 

• XSS attacks the end user -- it runs arbitrary code in their 
browser.

• The browser is behind your firewall and is acting within the 
user’s security context.
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YOU CAN DO SOME NASTY 
THINGS WITH JAVASCRIPT

• Javascript can control what appears on screen.

• Javascript has access to your history.

• Sites often store session tokens in GET request.

• Javascript can intercept cookies.

• Javascript can enumerate your network.
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XSS TAXONOMY
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REFLECTED XSS

• Victim browser submits an “evil” request that contains 
javascript.

• The web application then reflects that javascript back 
to the victim browser, which then executes it.

Web AppVictim 
Browser

Attack 

XSS

Attacker Attack 

URL string 
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REFLECTED XSS

• Attack does not persist across users, sessions, or pages.

• It is only reflected back to the user that submits the 
malicious url.

• This is relatively easy to detect remotely via a scanner/fuzzer.
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PERSISTENT XSS

• An attacker stores an attack string in a web application.

• Visitors to that site access infected pages causing 
javascript execution.
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PERSISTENT XSS

• Can persist across user, sessions, and pages.

• It depends on application context and who can access the 
infected pages.

• Very difficult to detect remotely via scanning/fuzzing.

• There are many paths through an application, scanning is too 
noisy for a production system.

• Best identified by code analysis.
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HYBRID XSS

• Victim browser submits “evil” url.

• Attack string is stored as session data.

• Session data is returned to browser on another page, 
executing javascript.
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HYBRID XSS

• Attacks are not persistent across sessions.

• Attacks do persist across pages.

• Attacks may persist across users.

• Think about “who’s online” functionality.

• Extremely difficult to detect remotely.

• May require specific request sequences.
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DETECTING INJECTION 
FLAWS REMOTELY
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SCANNING FOR REFLECTED 
XSS VULNERABILITIES

• This requires a simple fuzzer.

• Send an attack string.

• Check for appropriately encoded returns.

• The most difficult part is maintaining a current attack string list.
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SCANNING FOR PERSISTENT 
XSS VULNERABILITIES

• This sort of scanner is immature.

• Requires mapping input cause vs. output effect 
without knowledge of application state.

• A persistent XSS scan is extremely noisy.

• Each form has to have unique data submitted in 
order to map persistent data across the site.

• Running an attack list against the mapped site creates 
one persistent record per attack string.
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DETECTING INJECTION 
FLAWS LOCALLY
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AVAILABLE TECHNIQUES

• Static code analysis

• Examines the source code

• Dynamic analysis

• Examines application state
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STATIC CODE ANALYSIS

• Manual code review.

• Static code analyzers:

• Pixy (PHP)

• CAT.NET (ASP.NET)

• CodeSecure (Java/ASP.NET/PHP)
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WHAT STATIC ANALYSIS CAN 
DETECT

• Input sanitization

• Really only boolean, doesn’t evaluate quality.

• Output encoding

• Are both application (html) and character encoding explicit?

• Data flow

• Does anything skip sanitization or encoding?
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DYNAMIC CODE ANALYSIS

• The only way to consider application state.

• Remember that persistent and hybrid XSS are state-
dependent.

• Internal representation of data is tied to risk.

• There aren’t a lot of existing tools.

• Most existing are run-time IPS-style tools.
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DEFENDING AGAINST XSS
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THERE ARE THREE CONTROL 
POINTS FOR XSS

Browser Database

IT Infrastructure

Web 
Application

XSS can be mitigated at all three points.
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THE BROWSER

• Different browsers will execute different code snippets.

• O9, IE6: <BODY BACKGROUND="javascript:alert('XSS');">

• FF2, O9: <META HTTP-EQUIV="refresh" CONTENT="0;url=data:text/
html;base64,PHNjcmlwdD5hbGVydCgnWFNTJyk8L3NjcmlwdD4K">

• Current browsers are much better than previous generations.
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IT INFRASTRUCTURE

• Web application firewalls.

• Intrusion prevention systems.

• Web application sandboxes.

• All of these are signature-based defenses.

Saturday, May 23, 2009



WEB APPLICATION DEFENSE
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IT’S ALL ABOUT PROCESS

• This requires a consistent and enforced architectural 
approach.

• JSP, PHP 3/4, and classic ASP don’t lend themselves to 
this approach.

Request Return

Decode EncodeLogicSecurity 
Checks

Saturday, May 23, 2009



DECODE YOUR INPUT

• If the request specified an encoding, you might want to 
assume that encoding for parameters.

• HTTP defaults to ISO-8859-1

• Convert the request to your application’s internal 
representation.

Accept-Language: en-us,en;q=0.5
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
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SECURITY CHECKS

• This is where you apply your whitelists.

• Remember the principal of least privilege and use the most 
restrictive patterns possible.

• If you must accept markup tags, parse the tags and replace 
them with tokens.

• Consider whitelisting any paths or URLs.
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SANITIZING HTML

• There are a number of libraries available to do this for you.

• Microsoft AntiXSS (.NET),

• OWASP AntiSamy (Java, .NET, Python).

• HTML Purifier (PHP)
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WRITING YOUR OWN 
SANITIZATION LIBRARY

• Whitelist HTML tags.

• Be as restrictive as possible.

• If allowing high-risk tasks (such as <a> and <img>), consider whitelisting 
their targets.

• Replace all the allowed tags with symbols. Parse them for properties.

• Store them this way.

• Replace the symbols prior to encoding. This way, everything is 
constructed in your code and not passed from the user.
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ENCODE YOUR OUTPUT

• Most commonly, encode using html entities.

• After entity encoding, replace your tokens with actual tags.

• If the final output is not html, encode accordingly.

• XML if outputting AJAX, XAML, etc.
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EXPLICITLY DECLARE YOUR 
CHARACTER SET

• Your web server can do it for you:

• AddCharset UTF-8 .php (Apache .htaccess)

• If in doubt, override your web server :

• header('Content-type: text/html; charset=utf-8'); (PHP .htaccess)

• <%Response.charset="utf-8"%> (ASP.NET)

• print "Content-Type: text/html; charset=utf-8\n\n"; (Perl)
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DO YOUR SECURITY CHECKS 
ACTUALLY WORK?

foreach ($_GET as $secvalue) {
    if ((eregi("<[^>]*script*\"?[^>]*>", $secvalue)) ||
	 (eregi("<[^>]*object*\"?[^>]*>", $secvalue)) ||
	 (eregi("<[^>]*iframe*\"?[^>]*>", $secvalue)) ||
	 (eregi("<[^>]*applet*\"?[^>]*>", $secvalue)) ||
	 (eregi("<[^>]*meta*\"?[^>]*>", $secvalue)) ||
	 (eregi("<[^>]*style*\"?[^>]*>", $secvalue)) ||
	 (eregi("<[^>]*form*\"?[^>]*>", $secvalue)) ||
	 (eregi("\([^>]*\"?[^)]*\)", $secvalue)) ||
	 (eregi("\"", $secvalue))) {
        die ("<center><img src=images/logo.gif><br><br><b>The html tags you attempted to use are not allowed</
b><br><br>[ <a href=\"javascript:history.go(-1)\"><b>Go Back</b></a> ]");
    }
}

foreach ($_POST as $secvalue) {
    if ((eregi("<[^>]*script*\"?[^>]*>", $secvalue)) ||	(eregi("<[^>]*style*\"?[^>]*>", $secvalue))) {
        die ("<center><img src=images/logo.gif><br><br><b>The html tags you attempted to use are not allowed</
b><br><br>[ <a href=\"javascript:history.go(-1)\"><b>Go Back</b></a> ]");
    }
}

This is actual code in a popular CMS.
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TESTING ARCHITECTURAL 
PATTERN IMPLEMENTATION
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VALIDATES INPUT 
SANITIZATION

Web Fuzzer

Target 
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Sanitization Validator attack strings

attack strings Stored strings
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VALIDATES OUTPUT 
ENCODING

Endcoding Validator

Target 
App

Database

Virtual Machine

Database Fuzzerattack strings

attack stringsStored strings
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[DEMO]
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TOOL BENEFITS

• Finds fundamental problems in software design

• More complex attacks rely on either sanitization or encoding 
to be broken.

• Detects persistent XSS attack vectors.

• In a dedicated VM, noise doesn’t matter.
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TOOL LIMITATIONS

• Only works with database-resident state data

• Cookies, header, etc are also valid XSS threats.

• Only works against HTML forms

• Can be extended to include AJAX, headers, cookies, etc.
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TOOL PLANS

• Move it from PHP to C#.

• Create a PM-friendly interface so that anyone can run it.

• Add authentication integration:

• Web forms, OpenID.

• Expand it to include non-form fuzzing.
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WHY IS THIS HARD?

• Legacy applications and languages often don’t lend 
themselves to this architectural pattern.

• Browser behavior is often unexpected and gibberish 
code can be executed.

• Application complexity makes it difficult to predict 
state, just like a client application. 

• Applications and developers change over time.
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CALL TO ACTION

• Write better code. 

• Use current browser technology.

• Honestly assess your enterprise.

• Do you have lots of legacy code?
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I’M WEB 2.0

• Blog: http://hackerco.de

• LinkedIn: http://www.linkedin.com/pub/don-ankney/6/213/651

• Twitter : http://twitter.com/dankney

• E-mail: dankney@hackerco.de
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QUESTIONS?
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