
Covert Crawling: A Wolf Among
Lambs
Billy Hoffman (bhoffman@spidynamics.com)

SPI Labs Security Researcher

Overview

• State of web application attacks
• How does a covert crawler change things?
• Obstacles to create a covert crawler

– Acting like a browser
– Acting like a human
– Throttling and timing issues

• Implementation of a covert crawler
• Questions

The State of the Union

• People are hacking websites because it’s easy
– Web vulnerabilities like SQL Injection, session

hijacking, cookie theft and cross site scripting are
laughably common

• People are hacking websites because it’s news
– MySpace.com XSS virus (October 2005)

• People are hacking websites because they can make
money
– Identity theft, credit card numbers, content theft

The State of the Union

• Administrators are patching some holes (php[whatever]
exploit of the week)

• Relying on logs if they get attacked
• Contact IPs of the attacker, normally proxies that

shouldn't be open, and then two people go after attacker
• Whether you can successfully sneak an attack by an

IDS/IPS is debatable, but no one just attacks out of thin
air

• Almost all attacks are foreshadowed by some form of
reconnaissance

• Administrators rely on server logs to find this initial
probing as well

Why Performance Reconnaissance

• Running a straight audit of an entire web application is
not practical if you are malicious
– Takes too long
– Too much network noise (IDS evasion or not)

• Reconnaissance provides information to assist an attack
– What versions of what technologies are used
– Structure and layout of site
– State keeping methods, authentication methods, etc
– HTML comments

• Developer names
• Contracted company names
• Email addresses

– Provides a subset of pages to actually attack

Types of Reconnaissance

• Browse site by hand in a web browser
– Lets the user direct the search at what they want
– Looks for areas with specific vulnerabilities (SQL

Injection in search engine, ordering system, etc)
– Takes time user could be doing other things with
– Not exhaustive search of entire site

• Automated crawler
– Wget, some custom Perl::LWP script
– Hits every page on the site
– Very obvious in server log who crawled them, when,

and what they got

Covert Crawling

• Covert crawling has all the pros of regular automated
crawling (exhaustive search, automatic, saves resources
for later analysis)

• Covert crawling uses various tricks to make the crawl
appear as if it actually was hundreds of different users
from different IPs that were browsing the target website

• Not used to actually attack a site.
– Finds a likely subset of pages to attack
– Attacker can later use IDS/IPS evasion techniques to

launch attacks on a subset of pages
• Logs are unable to show a reconnaissance ever

happened!

Why Run a Covert Crawl?

• Malicious user preforming reconnaissance who wants to
reduce the forensics trail

• A company who wants to monitor a competitor's progress
without leaving a trace. Prevents their research interests
from being leaked based on their crawling/browsing (IBM
patent database)

• A lawyer monitoring a website on behalf of a client for
libel statements or posting

• Miscellaneous intelligence gathering
• General privacy/anonymity reasons

Using a Search Engine Cache?

• “This is silly, use the Google cache!” Very bad idea.
• HTML comes from Google cache, but IMGs, OBJECTS,

SCRIPTs come for target site. Server logs will reveal
Google cache referrers.

• Google respects the robots exclusion standard
• Google doesn't cache everything (external JavaScript)
• Things can be removed from the Google cache
• Limited to 1000 queries a day if using Google API
• Google does not serve > 1000 results per query
• Limited by Google allowing you use the cache in the

future
• Crawling the site yourself is the only way to guarantee

you download all content both now and in the future

Obstacles to Overcome

• Covert crawler consists of requester controlled by a
master program

• Needs to mimic a browser controlled by a human
• Not an easy task

– Crawlers don't act like browsers
– Crawlers and humans make fundamentally different

choices regarding which links to follow when
• Multiple IPs must be used to spread the crawl out to

reduce the bandwidth footprint from any single IP address
– Must control all these threads
– Must maintain proper session state for each thread
– Must prevent threads from appearing to be

collaborative in any way
• The crawler must be throttled to not overwhelm a site

Obstacle 1: Acting Like a Browser

Behavior: Crawlers vs. Browsers

• Crawlers never visually render responses, so HTTP
headers describing content abilities are minimal

• Browsers are rich user-agents which sends many HTTP
headers to get the best possible resource

• Crawlers request HTML and parse it to find more links
• Browsers request HTML and all supporting files

• Crawlers are relatively simple
• Browsers are complex. They contain code for running

Java applets, Flash, JavaScript, and ActiveX objects. These
technologies can make direct HTTP connections
themselves

Details of a Browser Request

• Browsers send lots of HTTP headers with each request
• A covert crawler must duplicate the order and values of

these headers
• Pick the most common browser, the most common

version

Manipulating HTTP Headers in Java

• Java's HTTP functions are
not useful
– Proxy nastiness

• HTTPClient – full featured
HTTP library for Java

• Ronald Tschalär
• http://www.innovation.ch/java/

• Allows direct access to
HTTP headers
– Can control ordering

(with some hacking)
– Can control types and

values

Getting Page Resources

• One HTML page causes
several other HTTP
transactions

• Images
• Image link maps<MAP>

and <AREA>
• Client-side scripting

<SCRIPT>
• Complex media

<OBJECT>, <APPLET>,
and <EMBED>

• Favicons <LINK>

“Browser-fying” a Crawler

More Browser Emulation

• Acting like a browser more than just sending the same
HTTP requests

• How you send them
– Use HTTP persistent connections
– Use pipelinging if applicable

• If you even need to send them
– Implement a crawler cache
– Respect cache control headers
– Should only request a resource if not already cached
– If a resource has a cache directive use conditional

GETs to attempt to retrieve it if it is seen again.
– Conditional GETs keep the server logs looking normal

Complex HTML issues

• Some features of HTML make “browser-fying” difficult
• HTML can contain objects that make HTTP connections on

their own
– JavaScript has AJAX (HTTP connection back to origin)
– Flash can use sockets
– Java applets can use sockets
– ActiveX can use sockets

• META refresh tags
– Other objects continue download, then redirect

happens

Writing Java, Flash, JavaScript, and ActiveX parsers is
outside the scope of this project. I ignore them for now.

Obstacle 2: Browsing Like a Human

Behavior: Crawlers vs. Humans

• Crawlers navigate links and make requests in a very
obvious and predictable pattern. This is easy to detect in
logs

• Humans make browsing decisions based on content and
other factors. The request pattern is very different from a
crawler’s

• Title really should be “Behavior: Computers vs. Humans”
• Replicating human behavior is a complex problem.
• This project was not a master thesis on AI
• We need to find a good enough solution that is practical.

Pseudo code of a Breadth First
Crawler

● Traditional breadth first search (BFS) crawler
1. Remove a link from the pending queue
2. Retrieve the resource
3. Store local copy for later analysis (indexing, etc)
4. If Content-Type is not text/html go to step 6
5. For each link in the HTML

● Check if link already exists in pending link queue
● If not, add link to end of pending link queue

6. If pending link queue is empty, stop the crawler
7. Go to step 1

Page Retrieval for a BFS Crawler

• Queue data structure causes
crawler to visit all the pages
of equal depth before going
deeper

• Pros
– Simple design
– Lots of examples

• Cons
– Very obvious, non-human

request order
– Pages will be requested

when the previous
response contained no
link to that page

Browsing like a Human

• All links are
equal...

• ...but some links
are more equal
than others.

Page Retrieval for a Human

• Pattern of human requests are different than BFS crawlers’
requests

• Each humans will access resources in a different order
based on personal tastes. Crawlers almost always act the
same.

• Lesson: link selection is extremely important in covert
crawling

Browsing Like a Human

• Humans and crawlers see HTML differently
– Crawlers simply see a list of links
– Humans see a page with content and filter the links on

the page
• Humans filter links using several factors

– Positive link context: Is it something the user is
interested in?

– Negative link context: Is it something the user is not
interested in?

– Link presentation: Is the presentation of the link itself
interesting enough to warrant clicking it?

• How can a crawl filter links like a human does?

Filtering links

• Understanding the context of a link is complex
– We can fake it by examining the contents of the link’s

text
• Understanding the presentation of a link is easy

– Defined by HTML structure, CSS, etc
– Cannot evaluate images. Could say “Never ever click

on me!”
• Doesn't Google have to deal with this? Page Rank, link

relations, scoring of links?

Link Scoring

• Score for each link is calculated, defines how “popular” a
link is

• Pretty straightforward
– Contains emphasis relative to surrounding text
– Length of link text, both word size and word count
– Rate the “goodness” or “badness” of the link text

words
• Good words: new, main, update, sell, free, buy, etc
• Bad words: privacy, disclaim, copyright, legal,

about, jobs, etc
– For images, calculate the image’s area proportionally

to a 1024x768 screen
• Also score alt attribute text if present

Link Scoring: oreilly.com

• Works fairly well!

Link Scoring: oreilly.com

Lessons Learned From Link Scoring

• Position in HTML is not a good indicator for score
– Separating structure and presentation

• Style sheets make emphasis detection difficult
– Can be declared in multiple places
– Browsers are forgiving of bad CSS like bad HTML
– Can overload styles inline inside the HTML

• Bad words are pretty static – who reads privacy.html?
• Good words can vary from site to site
• Don't score links whose target is the current page
• Table of contents style link lists are hard to deal with

Using Link Scoring for Crawlers

• Use a priority queue for pending links instead of regular
queue

• Sort by decreasing link score
• When inserting into queue, check if URL already exists

– If so, sum the 2 link scores
– Averaging would actually hurt a link's score. Consider

a big image link and a small text link
– Issues of URL equality with multiple threads (later in

slides)
• Front of queue is always the most popular link the crawler

has seen

Acting Like a Human

• Humans need time to process what the browser presents
• Each crawling thread of the crawler must wait some

amount of time before requesting a new page
– Based on actual size of rendered content
– Random, using average user-browsing statistics

• Give the different threads personalities
– Give a program some keywords it likes based on site

content (like Apple, or Firewire)
– On pages that have those keywords, crawler takes a

longer time looking at the page before moving on
– Other pages the thread quickly clicks through

Obstacle 3: Reducing the Bandwidth
Footprint

Leveraging Open Proxies

• We need to spread the crawl over multiple IPs. Open
HTTP proxies are used
– Possible a weakness in the covert crawler since we are

leaving IP addresses of known proxies in the server
logs

• Choice of proxies is very important
– Crawling a US bank, only use US proxies, some in

Western Europe.
• Minimize the number of proxies that announce they are

proxies
– Via, X-Forward-For, Max-Forwards show an HTTP

request is being proxied
• Test proxies by examining headers they allow through
• Sometimes it's not so bad to admit you are a proxy

The Deep Link Problem

• Users get to deep pages inside
a website 3 ways:
– Navigated there from some

other internal page
– Followed a bookmark (no

Referrer header)
– Followed a link, usually a

search engine (has
Referrer)

• When we sending requests
across multiple IPs, sending
deep requests is dangerous

• Green requests a page they've
never seen

The Deep Link Problem

• IPs that make requests out out of the blue look
suspicious.

• A covert crawler can never make deep requests from an
IP that has no business making that request

• So our instead of telling our crawling threads “Make a
request for [URL]” we tell them “Get to this [URL]”

• We keep a shared graph representing the website
– Unidirectional edges, cyclic graph
– Nodes are HTML pages
– Edges are hyperlinks

• Each crawling thread know its current location and the
content of past pages. It uses the graph to find the path
to take to get to the desired resource, requesting as it
goes

Paths to Pages vs. Deep Links

• Green and blue are
crawling threads

• Blue is at E, Green at A
• Color shows history
• Link Queue: F, D
• Green told to go to F
• Green consults graph, finds

path to F which is A-B-E-F
• Green requests B even

though in master view we
already have it!

• Green requests E
• Green requests F

Paths to Pages vs. Deep Links

• Key Is to use shared graph solely for finding paths to
resources.

• Uses modified BFS algorithm to find paths inside graph
– Uses random collection instead of BFS's queue or

DFS's stack means path is reasonably short, but not
always the same path between 2 nodes.

• Since graph is unidirectional, its possible there is no path
from a crawling thread's current position to destination
– But our crawling thread acts just like a browser,

including a URL history and forward/back buttons
– No path from current position, simply “go back” one

URL in the history and find path from there

Session State Issues

• HTTP is stateless. Web application keep state using:
– Cookies
– In URL

• Must ensure that session state associated with the
crawling thread that found a new link doesn't get resent
by a different crawling thread

• Crawling threads don't share cookies
• Crawling threads do a common pending URL
• In URL session state could hurt us

Session State issues

• Again using a graph and paths help us
• Since the crawler never jumps directly to a target page

but instead follows a path to that page, we keep our
session state along the way!

• This is best shown by example

Session State – Frame 1

• Blue has visited root, C, and
E

• Link queue is B, F, A
• Graph's nodes are defined by

URLs that are “polluted” with
Blue's in URL session state
(sid=...)

• Green is spawned and told to
go to B

• Green uses path Root-B
• Green makes a request for

the root (which is not
polluted by Blue's session
state)

Session State – Frame 2

• Blue is at E, Green is at Root
• Link queue is F, A
• Green makes request for

Root, gets it.
• Green knows it will have a

link to B (from the shared
graph)

• Green knowns what link to B
looks like (but it contains B's
session state)

• Green scans all links on root,
looking for link that has the
same path/filename but
different session state

Session State – Frame 2 (Cont'd)

• Blue is at E, Green is at Root
• Link queue is F, A
• Green looks at a diff of the

links, finds link to B on its
copy of root

• This link will contain Green's
session state

• Green can now make a
request for B correctly

• Green makes the request for
page B

Session State – Frame 3

• Blue is at E, Green is at B
• Link queue is F, A
• Green now told to go to F
• Green looks at graph, finds

path B-E-F
• Green looks at its copy of B

and using the URL for E in
the shared graph (which is
“polluted”) finds its version
of the link to page E

• Green now makes a request
for page E

Session State – Frame 4

• Blue is at E, Green is at E
• Link queue is A
• Green knows its one hop

away from its destination,
page F

• Green looks at its copy of E
and using the URL for F in
the shared graph (which is
“polluted”) finds its version
of the link to page F

• Green now makes a request
for page F

• Green has successfully
retrieved page F, always with
the proper session state

Path to Pages - Conclusions

• Any links that Green finds on page F will be added into
the pending queue if they don't already exist, and added
to the tree

• Links in the pending queue are related to nodes in the
graph. All pending links are leaf nodes

• Crawling thread will overlap and will download same
pages multiple times

• Only way to make each appear as a separate user on a
separate IP

Alternatives to Path To Pages

• Users also can access deep linked pages from a search
engine or another page

• Covert crawler should create fake Google referrers and
can deep jump directly into a website

• It looks as if we came in from Google
• Google referrer header will contain search terms we used

but its all fake.
• Crawler cannot jump to a leaf node.
• If a URL is a leaf node, we have no visited it yet and don't

know its content
• Without content, we cannot fake a Google referrer

Deep Jumping with Fake HTTP
Headers
• Blue is at E, Green is at

nowhere
• Link queue is F, B, A
• Green is spawned and told to

go to page F
• Decides to do a deep jump
• Found a page E that links to

page F
• Green looks at the content of

page E for keywords
• Green creates a request for

page E with the “Referer”
(sic) header set to a Google
query (google.com/?q=) for
those keywords

Deep Jumping with Fake HTTP
Headers
• Blue is at E, Green is at E
• Link queue is B, A
• Green received page E
• Green knows it needs to go

to F
• Green looks at its copy of E

and using the URL for F in
the shared graph (which is
“polluted”) finds its version
of the link to page F

• Green sends the request for
F

• All done!

Throttling Issues

• Need some mechanism to determine how popular a site
is to throttle how many crawling threads to have and how
often they run

• IP Fragment ID (Fyodor's How to Own a Continent
chapter)

• WHOIS to find site age
• Archive.org to find how often it's updated
• Google to find number inbound links (popularity)
• Google to find size of site (that Google can index)
• Alexa, other services for popularity info
• Really hard to do! Still refining it.

Traffic Escalation

What is Traffic Escalation

• A site receiving orders of
magnitude more traffic
than normal

• Big news story, blog
• Slashdot, The Register,

CNET, etc

Must You Always Be Covert?

• We've focused on throttling a crawl to match a site's
traffic patterns

• If the site is getting flooded normal traffic patterns are
not longer relevant!

• Traffic escalation allows malicious users to
– Increase the speed of the crawler
– Increase the number of pseudo-browser threads

crawling the site
– Increase max number of pages each pseudo-browser

can visit
• Covert methods should still be used! More traffic doesn't

negate browser emulation or intelligent link selection

Predicting a Flood?

• How do you predict a site that will get massive amount of
traffic?

• Ask why traffic escalation happens
• A link appears on a popular site to a relatively less

popular site escalating the traffic of the lesser site.
• Major new sites and blogs have RSS feeds...
• Write a simple agent that subscribes to major RSS feeds.

Scan new stories for links, checks Google, etc, for
referenced sites' popularity. Notify user when less
popular site is linked and possibly under heavy assault.

Causing a Traffic Escalation
(Slashbombing)

• Sometimes traffic floods need a little nudge
– Find some interesting content on a site you want to

crawl
– Submit it to a popular news/blog site and see if they

pick up the story
• Sometimes traffic floods need a ruptured dam

– Quickly find a cross site scripting (XSS) vulnerability in
a major news site. They are everywhere

– Exploit XSS to serve a fake inflammatory article
(simple document.write, no DB exploitation)

– Submit link to fake inflammatory story to another
major news site

– Watch the flood

Implementation of a Covert Crawler

Covert Crawler

• Written in Java
• Emulates a Windows XP SP2 IE browser
• Uses scoring to make link request decisions
• Multiple threaded across any number of IP's

– Uses graph and modified BFS to create random ,
reasonably short paths to pages

– Session state issues resolved by not sharing cookies
and diffing URLs to avoid in URL state

• Uses “personalities” to determine how long a page is
viewed.

• Source code will be released soon. See
http://www.spidynamics.com/spilabs/

Final Thoughts

Sanity Checks

• Someone does not have to crawl the entire site, just
enough to learn the structure are technologies
– CNN.com is ~220,000 pages
– But only has a few footholds

• Stock ticker
• Story content system
• Video server
• Email alerts
• Search engine

– A malicious user only needs a few samples of each.
More are unnecessary

Summary

• Crawlers can be programmed to send requests just like a
browser does

• Crawlers can make intelligent link selections that mimics
human behavior (to some extent)

• Covert crawling can be scaled across multiple threads
and IPs without revealing there is one mast crawl going
on

• Session state can be handled by not sharing cookies and
only following paths to pages instead of just requesting of
deep links.

• Throttling is tricky, but can be done
• Traffic can be increased to hide any mistakes
• Proxy selection is a weakness in this system but this can

be mitigated

What to Take Away From All This

• You cannot rely on your logs
– To tell you when you are being scoped out as a target
– To tell you any one user is grabbing large parts of your

website
– To reveal who has been testing you after you discover

an attack
• Logs are a passive defense. Stop being passive!
• Fix the vulnerabilities in your web applications

Questions?

Covert Crawling: A Wolf Among
Lambs
Billy Hoffman (bhoffman@spidynamics.com)

SPI Labs Security Researcher

